Page 85 - IJB-10-2
P. 85

International Journal of Bioprinting                                         Advancements in 3D printing




            86.  Kim DI, Song S, Jang S, et al. Untethered gripper-type   97.  Rieu J, Goeuriot P. Ceramic composites for biomedical
               hydrogel millirobot actuated by electric field and magnetic   applications. Clin Mater. 1993;12(4):211-217.
               field. Smart Mater Struct. 2020;29(8):085024.      doi: 10.1016/0267-6605(93)90075-I
               doi: 10.1088/1361-665x/ab8ea4
                                                               98.  Swarte JC, Li YN, Hu SX, et al. Gut microbiome dysbiosis
            87.  Peng XW, Peng Q, Wu M, et al. A pH and temperature   is associated with increased mortality after solid organ
               dual-responsive  microgel-embedded,  adhesive,  and tough   transplantation. Sci Transl Med. 2022;14(660):eabn7566.
               hydrogel for drug delivery and wound healing.  ACS Appl      doi: 10.1126/scitranslmed.abn7566
               Mater Interfaces. 2023;15(15):19560-19573.      99.  Duneton C, Winterberg PD, Ford ML. Activation and
               doi: 10.1021/acsami.2c21255
                                                                  regulation of alloreactive T cell immunity in solid organ
            88.  Youness RA, Tag El-deen DM, Taha MA . A review on   transplantation. Nat Rev Nephrol. 2022;18(10):663-676.
               calcium silicate ceramics: properties, limitations, and      doi: 10.1038/s41581-022-00600-0
               solutions for their use in biomedical applications.  Silicon.   100. Xu KL, Han Y, Huang YY, Wei P, Yin J, Jiang JY. The
               2023;15(6):2493-2505.                              application of 3D bioprinting in urological diseases. Mater
               doi: 10.1007/s12633-022-02207-3
                                                                  Today Bio. 2022;100388.
            89.  Shu CQ, Qin C, Chen L, et al. Metal‐organic framework      doi: 10.1016/j.mtbio.2022.100388
               functionalized  bioceramic  scaffolds  with  antioxidative   101. Zennifer A, Manivannan S, Sethuraman S, Kumbar SG,
               activity for enhanced osteochondral regeneration. Adv Sci.
               2023;10(13):6875-6888.                             Sundaramurthi D. 3D bioprinting and photocrosslinking:
               doi: 10.1002/advs.202206875                        emerging strategies & future perspectives.  Biomater Adv.
                                                                  2022;134:112576-112599.
            90.  Kost J, Huwyler J, Puchkov M. Calcium phosphate      doi: 10.1016/j.msec.2021.112576
               microcapsules as multifunctional drug delivery devices. Adv
               Funct Mater. 2023;202303333.                    102. Bose S, Roy M, Bandyopadhyay A. Recent advances in
               doi: 10.1002/adfm.202303333                        bone tissue engineering scaffolds.  Trends Biotechnol.
                                                                  2012;30(10):546-554.
            91.  Li M, Jiang JW, Liu WB, et al. Bioadaptable bioactive glass-β-     doi: 10.1016/j.tibtech.2012.07.005
               tricalcium phosphate scaffolds with TPMS-gyroid structure
               by stereolithography for bone regeneration.  J Mater Sci   103. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone
               Technol. 2023;155:54-65.                           tissue engineering using 3D printing.  Mater  Today.
               doi: 10.1016/j.jmst.2023.01.025                    2013;16(12):496-504.
                                                                  doi: 10.1016/j.mattod.2013.11.017
            92.  Feng YHZ, Wu D, Knaus J, et al. A bioinspired gelatin–
               amorphous calcium phosphate coating on titanium   104. Ma ZC, Zhang YL, Han B,  et al. Femtosecond laser
               implant  for  bone  regeneration.  Adv Healthc Mater.  2023;   programmed artificial  musculoskeletal  systems.  Nat
               3411-3423.                                         Commun. 2020;11(1):4536-4545.
               doi: 10.1002/adhm.202203411                        doi: 10.1038/s41467-020-18117-0
                                                               105.  Huang HJ, Xing WR, Zeng CJ, Huang WH. Pararectus approach
            93.  Yuan G, Xu YN, Bai XP, et al. Autophagy-targeted
               calcium phosphate nanoparticles enable transarterial   combined with three-dimensional printing for anterior plate
               chemoembolization for enhanced cancer therapy. ACS Appl   fixation of sacral fractures. Injury. 2021;52(10):2719-2724.
               Mater Interfaces. 2023;15(9):11431-11443.          doi: 10.1016/j.injury.2020.03.049
               doi: 10.1021/acsami.2c18267                     106. Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff J. A versatile
                                                                  pH sensitive chondroitin sulfate-PEG tissue adhesive and
            94.  Zhang YG, Li JP, Soleimani M, et al. Biodegradable elastic
               sponge from nanofibrous biphasic calcium phosphate   hydrogel. Biomaterials. 2010;31(10):2788-2797.
               ceramic as an advanced material for regenerative medicine.      doi: 10.1016/j.biomaterials.2009.12.033
               Adv Funct Mater. 2021;31(40):2911-2923.         107. Decarli MC, Seijas-Gamardo A, Morgan FLC,  et al.
               doi: 10.1002/adfm.202102911                        Bioprinting of stem cell spheroids followed by post-printing
                                                                  chondrogenic differentiation for cartilage tissue engineering.
            95.  Bartmański M, Rościszewska M, Wekwejt M, Ronowska A,
               Nadolska-Dawidowska M, Mielewczyk-Gryń A. Properties   Adv Healthc Mater. 2023;2203021.
               of new composite materials based on hydroxyapatite ceramic      doi: 10.1002/adhm.202203021
               and cross-linked gelatin for biomedical applications.  Int J   108. Liu DH, Nie W, Li DJ, et al. 3D printed PCL/SrHA scaffold for
               Mol Sci. 2022;23(16):9083-9097.                    enhanced bone regeneration. Chem Eng J. 2019;362:269-279.
               doi: 10.3390/ijms23169083                          doi: 10.1016/j.cej.2019.01.015
            96.  Vaiani L, Boccaccio A, Uva AE,  et al. Ceramic materials   109. Yan YF, Chen H, Zhang HB, et al. Vascularized 3D printed
               for biomedical applications: an overview on properties and   scaffolds for promoting bone regeneration.  Biomaterials.
               fabrication processes. J Funct Biomater. 2023;14(3):146-167.   2019;190:97-110.
               doi: 10.3390/jfb14030146                           doi: 10.1016/j.biomaterials.2018.10.033


            Volume 10 Issue 2 (2024)                        77                                doi: 10.36922/ijb.1752
   80   81   82   83   84   85   86   87   88   89   90