Page 82 - IJB-10-2
P. 82

International Journal of Bioprinting                                         Advancements in 3D printing




            17.  Alheib O, da Silva LP, Youn YH, Kwon IK, Reis RL, Correlo   29.  Daikuara LY, Chen XF, Yue ZL, et al. 3D bioprinting
               VM.  3D  bioprinting  of gellan  gum‐based hydrogels   constructs to facilitate skin regeneration. Adv Funct Mater.
               tethered with laminin‐derived peptides for improved   2022;32(3):5080-5103.
               cellular behavior. J Biomed Mater Res Part A. 2022;110(10):      doi: 10.1002/adfm.202105080
               1655-1668.                                      30.  Noroozi R, Shamekhi MA, Mahmoudi R,  et al. In vitro
               doi: 10.1002/jbm.a.37415
                                                                  static and dynamic cell culture study of novel bone scaffolds
            18.  Lovecchio J, Cortesi M, Zani M, Govoni M, Dallari D,   based on 3D-printed PLA and cell-laden alginate hydrogel.
               Giordano E. Fiber thickness and porosity control in a   Biomed Mater. 2022;17(4):045024.
               biopolymer  scaffold  3D  printed  through  a  converted      doi: 10.1088/1748-605x/ac7308
               commercial FDM device. Materials. 2022;15(7):2394-2403.   31.  Wang YM, Xu XY, Chen XY, Li JS. Multifunctional
               doi: 10.3390/ma15072394
                                                                  biomedical materials derived from biological membranes.
            19.  Koch F, Thaden O, Conrad S, et al. Mechanical properties of   Adv Mater. 2022;34(46):7406-7432.
               polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting      doi: 10.1002/adma.202107406
               with alginate-gelatin hydrogel. J Mech Behav Biomed Mater.   32.  Cheng W, Zhu Y, Jiang GY, et al. Sustainable cellulose and
               2022;130:105219.                                   its derivatives for promising biomedical applications. Prog
               doi: 10.1016/j.jmbbm.2022.105219
                                                                  Mater Sci. 2023;138:101152.
            20.  Soni VK, Sinha SK, Sharma HK. A review on 3D bioprinting      doi: 10.1016/j.pmatsci.2023.101152
               materials and technique. J Phase Change Mater. 2022;2(2):7-24.   33.  Markstedt K, Mantas A, Tournier I, Avila HM, Hagg D,
               doi: 10.58256/jpcm.v2i2.26
                                                                  Gatenholm  P.  3D  bioprinting  human  chondrocytes  with
            21.  Kantaros A. 3D printing in regenerative medicine:   nanocellulose–alginate bioink for cartilage tissue engineering
               technologies and resources utilized. Int J Mol Sci. 2022;23(23):   applications. Biomacromolecules. 2015;16(5):1489-1496.
               14621-14633.                                       doi: 10.1021/acs.biomac.5b00188
               doi: 10.3390/ijms232314621
                                                               34.  Sydney Gladman A, Matsumoto EA, Nuzzo RG, Mahadevan
            22.  Yang XT, Ma Y, Wang XT, et al. A 3D‐bioprinted functional   L, Lewis JA. Biomimetic 4D printing.  Nat Mater.
               module based on decellularized extracellular matrix   2016;15(4):413-418.
               bioink for periodontal regeneration.  Adv Sci. 2023;10(5):      doi: 10.1038/nmat4544
               5041-5058.                                      35.  Lee S, Hao LT, Park J, Oh DX, Hwang DS. Nanochitin
               doi: 10.1002/advs.202205041
                                                                  and nanochitosan: chitin nanostructure engineering with
            23.  Zhang W, Ye WB, Yan YF. Advances in photocrosslinkable   multiscale properties for biomedical and environmental
               materials for 3D bioprinting.  Adv Eng Mater. 2022;24(1):   applications. Adv Mater. 2023;35(4):3325-3360.
               663-675.                                           doi: 10.1002/adma.202203325
               doi: 10.1002/adem.202100663
                                                               36.  Deng LZ, Zhang LM. Rheological characteristics of
            24.  Zhu J, Wu PW, Chao YH, et al. Recent advances in 3D printing   chitin/ionic liquid gels and  electrochemical properties  of
               for catalytic applications. Chem Eng J. 2022;433:134341.   regenerated chitin hydrogels. Colloids Surf A: Physicochem
               doi: 10.1016/j.cej.2021.134341                     Eng Asp. 2020;586:124220.
                                                                  doi: 10.1016/j.colsurfa.2019.124220
            25.  Vrana NE, Gupta S, Mitra K,  et al. From 3D printing
               to 3D bioprinting: the material properties of polymeric   37.  Kotla NG, Mohd Isa IL, Larrañaga A, et al. Hyaluronic acid‐
               material and its derived bioink for achieving tissue specific   based bioconjugate systems, scaffolds, and their therapeutic
               architectures. Cell Tissue Bank. 2022;27:417-440.   potential. Adv Healthc Mater. 2023;2203104.
               doi: 10.1007/s10561-021-09975-z                    doi: 10.1002/adhm.202203104
            26.  Jandyal A, Chaturvedi I, Wazir I, Raina A, Haq MIU. 3D   38.  Le HV, Cerf DL. Colloidal polyelectrolyte complexes from
               printing–A review of processes, materials and applications   hyaluronic acid: preparation and biomedical applications.
               in industry 4.0. Sustain Operation Comput. 2022;3:33-42.   Small. 2022;18(51):4283-4308.
               doi: 10.1016/j.susoc.2021.09.004                   doi: 10.1002/smll.202204283
            27.  Yap YL, Toh W, Giam A,  et al. Topology optimization   39.  Park KH, Ryu B, Song JJ, et al. Hyaluronic acid microparticles
               and  3D  printing  of  micro-drone:  numerical  design  with   for effective spheroid culture and transplantation in liver
               experimental testing. Int J Mech Sci. 2023;237:107771.   tissue. Chem Eng J. 2023;464:142666.
               doi: 10.1016/j.ijmecsci.2022.107771                doi: 10.1016/j.cej.2023.142666
            28.  Tao J, Zhu SY, Liao XY, et al. DLP-based bioprinting of void-  40.  Chen QX, Lu YH, Zhang JP,  et al. Flexible structural
               forming hydrogels for enhanced stem-cell-mediated bone   polyethylene films for dynamically tunable energy harvesting
               regeneration. Mater Today Bio. 2022;17:100487.     from the sun and outer space. Nano Energy. 2023;114:108610.
               doi: 10.1016/j.mtbio.2022.100487                   doi: 10.1016/j.nanoen.2023.108610


            Volume 10 Issue 2 (2024)                        74                                doi: 10.36922/ijb.1752
   77   78   79   80   81   82   83   84   85   86   87