Page 20 - IJB-3-1
P. 20

In vitro pre-vascularization strategies for tissue engineered constructs–Bioprinting and others

             28.  Hinton T J, Jallerat Q, Palchesko R N, et al. 2015, Three-   Biomedicine and Biotechnology, vol.2009: 823148.
                 dimensional printing of complex biological structures by   http://dx.doi.org/10.1155/2009/823148
                 freeform  reversible  embedding  of suspended  hydrogels.   41.  Zheng  Y,  Chen  J,  Craven  M,  et  al.  2012,  In  vitro
                 Science Advances, vol.1(9): e1500758.             microvessels  for  the  study  of  angiogenesis  and  throm-
                 http://dx.doi.org/10.1126/sciadv.1500758          bosis. Proceedings of the National Academy of Sciences
             29.  Schuurman  W,  Khristov  V,  Pot  M  W,  et  al.  2011,   of the United States of America, vol.109(24): 9342–9347.
                 Bioprinting  of  hybrid  tissue  constructs  with  tailorable   http://dx.doi.org/10.1073/pnas.1201240109
                 mechanical  properties.  Biofabrication,  vol.3(2):  21001.   42.  Tocchio  A,  Tamplenizza  M,  Martello  F,  et  al.  2015,
                 http://dx.doi.org/10.1088/1758-5082/3/2/021001    Versatile fabrication of vascularizable scaffolds for large
             30.  Norotte  C,  Marga  F  S,  Niklason  L  E,  et  al.  2009,   tissue  engineering  in  bioreactor.  Biomaterials,  vol.45:
                 Scaffold-free vascular tissue engineering using bioprinting.   124–131.
                 Biomaterials, vol.30(30): 5910–5917.              http://dx.doi.org/10.1016/j.biomaterials.2014.12.031
                 http://dx.doi.org/10.1016/j.biomaterials.2009.06.034   43.  Song J W, Bazou D and Munn L L, 2012, Anastomosis of
             31.  Tan Y, Richards D J, Trusk T C, et al. 2014, 3D printing   endothelial  sprouts  forms  new ve ssels  in  a  tissue
                 facilitated  scaffold-free  tissue  unit  fabrication.  Biofab-  analogue  of  angiogenesis.  Integrative  Biology,  vol.4(8):
                 rication, vol.6(2): 24111.                        857–862. http://dx.doi.org/10.1039/c2ib20061a
                 http://dx.doi.org/10.1088/1758-5082/6/2/024111   44.  Kim  S,  Lee  H,  Chung M ,  et  al.  2013,  Engineering  of
             32.  Miller J S, Stevens K R, Yang M T, et al. 2012, Rapid   functional,  perfusable  3D  microvascular  networks  on  a
                 casting  of p atterned  vascular  networks  for  perfusable   chip. Lab on a Chip, vol.13: 1489–1500.
                 engineered  three-dimensional  tissues.  Nature  Materials,   http://dx.doi/org/10.1039/c3lc41320a
                 vol.11(9): 768–774. http://dx.doi.org/10.1038/nmat3357   45.  Moya  M L ,  Hsu  Y-H,  Lee  A  P,  et  al.  2013,  In  vitro
             33.  Ovsianikov A, Gruene M, Pflaum M, et al. 2010, Laser   perfused  human  capillary  networks.  Tissue  Engineering
                 printing of cells into 3D scaffolds. Biofabrication, vol.2(1):   Part C: Methods, vol.19(9): 730–737.
                 14104.                                            http://dx.doi.org/10.1089/ten.TEC.2012.0430
                 http://dx.doi.org/10.1088/1758-5082/2/1/014104   46.  Chiu  L  L  Y,  Montgomery  M,  Liang  Y,  et  al.  2012,
             34.  Ringeisen  B R ,  Othon  C M ,  Barron  J  A,  et  al.  2006,   Perfusable branching microvessel bed for vascularization
                 Jet-based  methods  to  print  living  cells.  Biotechnology   of  engineered  tissues.  Proceedings  of  the  National
                 Journal, vol.1(9): 930–948.                       Academy  of  Sciences  of  the  United  States  of  America,
                 http://dx.doi.org/10.1002/biot.200600058          vol.109(50): E3414–3423.
             35.  Lin H, Zhang D, Alexander P G, et al. 2013, Application   http://dx.doi.org/10.1073/pnas.1210580109
                 of visible light-based projection stereolithography for live   47.  Yeon  J  H,  Ryu  H  R,  Chung  M,  et  al.  2012,  In  vitro
                 cell-scaffold  fabrication  with  designed  architecture.   formation  and  characterization  of  a  perfusable  three-
                 Biomaterials, vol.34(2): 331–339.                 dimensional  tubular  capillary  network  in microfluidic
                 http://dx.doi.org/10.1016/j.biomaterials.2012.09.048   devices. Lab on a Chip, vol.12(16): 2815.
             36.  Chan  V,  Zorlutuna  P,  Jeong  J  H,  et  al.  2010,  Three-   http://dx.doi.org/10.1039/c2lc40131b
                 dimensional  photopatterning of hydrogels  using  stereoli-  48.  Jakab  K,  Norotte  C,  Marga  F,  et  al.  2010,  Tissue
                 thography  for l ong-term  cell  encapsulation.  Lab  on a    engineering  by  self-assembly  and  bio-printing  of  living
                 Chip, vol.10(16): 2062–2070.                      cells. Biofabrication, vol.2(2): 22001.
                 http://dx.doi.org/10.1039/c004285d                http://dx.doi.org/10.1088/1758-5082/2/2/022001
             37.  Kolesky  D  B,  Truby  R  L,  Gladman  A  S,  et  al.  2014,   49.   Dickinson L E, Moura M E and Gerecht S, 2010, Guiding
                 3D bioprinting of vascularized, heterogeneous cell-laden   endothelial progenitor cell tube formation using patterned
                 tissue constructs. Advanced Materials, vol.26(19): 3124–   fibronectin surfaces. Soft Matter, vol.6(20): 5109.
                 3130. http://dx.doi.org/10.1002/adma.201305506    http://dx.doi.org/10.1039/C0SM00233J
             38.  Jia  W,  Gungor-Ozkerim  P  S,  Zhang  Y  S,  et  al.  2016,   50.   Raghavan  S,  Nelson  C  M,  Baranski  J  D,  et  al.  2010,
                 Direct  3D  bioprinting  of  perfusable  vascular  constructs   Geometrically  controlled  endothelial  tubulogenesis  in
                 using a blend bioink. Biomaterials, vol.106: 58–68.     micropatterned  gels.  Tissue   Engineering.  Part  A,
                 http://dx.doi.org/10.1016/j.biomaterials.2016.07.038   vol.16(7): 2255–2263.
             39.  Bertassoni  L  E,  Cecconi  M,  Manoharan  V,  et  al.  2014,   http://dx.doi.org/10.1089/ten.TEA.2009.0584
                 Hydrogel  bioprinted  microchannel  networks  for  vascul-  51.  Chaturvedi R R, Stevens K R, Solorzano R D, et al. 2015,
                 arization of tissue engineering constructs. Lab on a Chip,   Patterning  vascular  networks in vivo for  tissue enginee-
                 vol.14(13): 2202–2211.                            ring  applications.  Tissue  Engineering  Part  C:  Methods,
                 http://dx.doi.org/10.1039/c4lc00030g              vol.21(5): 509–517.
             40.  Van Der Meer A D, Poot A A, Duits M H G, et al. 2009,   http://dx.doi.org/10.1089/ten.TEC.2014.0258
                 Microfluidic technology in vascular research. Journal of   52.  Aubin H, Nichol J W, Hutson C B, et al. 2010, Directed
            16                           International Journal of Bioprinting (2017)–Volume 3, Issue 1
   15   16   17   18   19   20   21   22   23   24   25