Page 20 - IJB-3-1
P. 20
In vitro pre-vascularization strategies for tissue engineered constructs–Bioprinting and others
28. Hinton T J, Jallerat Q, Palchesko R N, et al. 2015, Three- Biomedicine and Biotechnology, vol.2009: 823148.
dimensional printing of complex biological structures by http://dx.doi.org/10.1155/2009/823148
freeform reversible embedding of suspended hydrogels. 41. Zheng Y, Chen J, Craven M, et al. 2012, In vitro
Science Advances, vol.1(9): e1500758. microvessels for the study of angiogenesis and throm-
http://dx.doi.org/10.1126/sciadv.1500758 bosis. Proceedings of the National Academy of Sciences
29. Schuurman W, Khristov V, Pot M W, et al. 2011, of the United States of America, vol.109(24): 9342–9347.
Bioprinting of hybrid tissue constructs with tailorable http://dx.doi.org/10.1073/pnas.1201240109
mechanical properties. Biofabrication, vol.3(2): 21001. 42. Tocchio A, Tamplenizza M, Martello F, et al. 2015,
http://dx.doi.org/10.1088/1758-5082/3/2/021001 Versatile fabrication of vascularizable scaffolds for large
30. Norotte C, Marga F S, Niklason L E, et al. 2009, tissue engineering in bioreactor. Biomaterials, vol.45:
Scaffold-free vascular tissue engineering using bioprinting. 124–131.
Biomaterials, vol.30(30): 5910–5917. http://dx.doi.org/10.1016/j.biomaterials.2014.12.031
http://dx.doi.org/10.1016/j.biomaterials.2009.06.034 43. Song J W, Bazou D and Munn L L, 2012, Anastomosis of
31. Tan Y, Richards D J, Trusk T C, et al. 2014, 3D printing endothelial sprouts forms new ve ssels in a tissue
facilitated scaffold-free tissue unit fabrication. Biofab- analogue of angiogenesis. Integrative Biology, vol.4(8):
rication, vol.6(2): 24111. 857–862. http://dx.doi.org/10.1039/c2ib20061a
http://dx.doi.org/10.1088/1758-5082/6/2/024111 44. Kim S, Lee H, Chung M , et al. 2013, Engineering of
32. Miller J S, Stevens K R, Yang M T, et al. 2012, Rapid functional, perfusable 3D microvascular networks on a
casting of p atterned vascular networks for perfusable chip. Lab on a Chip, vol.13: 1489–1500.
engineered three-dimensional tissues. Nature Materials, http://dx.doi/org/10.1039/c3lc41320a
vol.11(9): 768–774. http://dx.doi.org/10.1038/nmat3357 45. Moya M L , Hsu Y-H, Lee A P, et al. 2013, In vitro
33. Ovsianikov A, Gruene M, Pflaum M, et al. 2010, Laser perfused human capillary networks. Tissue Engineering
printing of cells into 3D scaffolds. Biofabrication, vol.2(1): Part C: Methods, vol.19(9): 730–737.
14104. http://dx.doi.org/10.1089/ten.TEC.2012.0430
http://dx.doi.org/10.1088/1758-5082/2/1/014104 46. Chiu L L Y, Montgomery M, Liang Y, et al. 2012,
34. Ringeisen B R , Othon C M , Barron J A, et al. 2006, Perfusable branching microvessel bed for vascularization
Jet-based methods to print living cells. Biotechnology of engineered tissues. Proceedings of the National
Journal, vol.1(9): 930–948. Academy of Sciences of the United States of America,
http://dx.doi.org/10.1002/biot.200600058 vol.109(50): E3414–3423.
35. Lin H, Zhang D, Alexander P G, et al. 2013, Application http://dx.doi.org/10.1073/pnas.1210580109
of visible light-based projection stereolithography for live 47. Yeon J H, Ryu H R, Chung M, et al. 2012, In vitro
cell-scaffold fabrication with designed architecture. formation and characterization of a perfusable three-
Biomaterials, vol.34(2): 331–339. dimensional tubular capillary network in microfluidic
http://dx.doi.org/10.1016/j.biomaterials.2012.09.048 devices. Lab on a Chip, vol.12(16): 2815.
36. Chan V, Zorlutuna P, Jeong J H, et al. 2010, Three- http://dx.doi.org/10.1039/c2lc40131b
dimensional photopatterning of hydrogels using stereoli- 48. Jakab K, Norotte C, Marga F, et al. 2010, Tissue
thography for l ong-term cell encapsulation. Lab on a engineering by self-assembly and bio-printing of living
Chip, vol.10(16): 2062–2070. cells. Biofabrication, vol.2(2): 22001.
http://dx.doi.org/10.1039/c004285d http://dx.doi.org/10.1088/1758-5082/2/2/022001
37. Kolesky D B, Truby R L, Gladman A S, et al. 2014, 49. Dickinson L E, Moura M E and Gerecht S, 2010, Guiding
3D bioprinting of vascularized, heterogeneous cell-laden endothelial progenitor cell tube formation using patterned
tissue constructs. Advanced Materials, vol.26(19): 3124– fibronectin surfaces. Soft Matter, vol.6(20): 5109.
3130. http://dx.doi.org/10.1002/adma.201305506 http://dx.doi.org/10.1039/C0SM00233J
38. Jia W, Gungor-Ozkerim P S, Zhang Y S, et al. 2016, 50. Raghavan S, Nelson C M, Baranski J D, et al. 2010,
Direct 3D bioprinting of perfusable vascular constructs Geometrically controlled endothelial tubulogenesis in
using a blend bioink. Biomaterials, vol.106: 58–68. micropatterned gels. Tissue Engineering. Part A,
http://dx.doi.org/10.1016/j.biomaterials.2016.07.038 vol.16(7): 2255–2263.
39. Bertassoni L E, Cecconi M, Manoharan V, et al. 2014, http://dx.doi.org/10.1089/ten.TEA.2009.0584
Hydrogel bioprinted microchannel networks for vascul- 51. Chaturvedi R R, Stevens K R, Solorzano R D, et al. 2015,
arization of tissue engineering constructs. Lab on a Chip, Patterning vascular networks in vivo for tissue enginee-
vol.14(13): 2202–2211. ring applications. Tissue Engineering Part C: Methods,
http://dx.doi.org/10.1039/c4lc00030g vol.21(5): 509–517.
40. Van Der Meer A D, Poot A A, Duits M H G, et al. 2009, http://dx.doi.org/10.1089/ten.TEC.2014.0258
Microfluidic technology in vascular research. Journal of 52. Aubin H, Nichol J W, Hutson C B, et al. 2010, Directed
16 International Journal of Bioprinting (2017)–Volume 3, Issue 1

