Page 21 - IJB-3-1
P. 21

Andy Wen Loong Liew and Yilei Zhang

                 3D  cell  alignment  and  elongation  in  microengineered   63.  Nishida  K,  Yamato  M,  Hayashida  Y,  et  al.  2004,
                 hydrogels. Biomaterials, vol.31(27): 6941–6951.     Functional  bioengineered  corneal  epithelial  sheet  grafts
                 http://dx.doi.org/10.1016/j.biomaterials.2010.05.056   from  corneal  stem  cells  expanded  ex  vivo  on  a  temper-
             53.  Nikkhah M, Eshak N, Zorlutuna P, et al. 2012, Directed   ature-responsive  cell  culture  surface.  Transplantation,
                 endothelial cell morphogenesis in micropatterned gelatin   vol.77(3): 379–385.
                 methacrylate hydrogels. Biomaterials, vol.33(35): 9009–   http://dx.doi.org/10.1097/01.TP.0000110320.45678.30
                 018. http://dx.doi.org/10.1016/j.biomaterials.2012.08.068   64.  Yamato M, Utsumi M, Kushida A, et al. 2001, Thermo-
             54.  van der Meer A D, Orlova V V, ten Dijke P, et al. 2013,   responsive  culture  dishes  allow  the  intact  harvest  of
                 Three-dimensional co-cultures of human endothelial cells   multilayered  keratinocyte  sheets  without  dispase  by
                 and  embryonic  stem  cell-derived  pericytes  inside  a   reducing  temperature.  Tissue  Engineering,  vol.7(4):
                 microfluidic device. Lab on a Chip, vol.13(18): 3562–3568.     473–480. http://dx.doi.org/10.1089/10763270152436517
                 http://dx.doi.org/10.1039/c3lc50435b          65.  Shimizu T, Yamato M, Kikuchi A, et al. 2003, Cell sheet
             55.  Leslie-Barbick  J  E,  Shen  C,  Chen  C,  et  al.  2011,   engineering for myocardial tissue reconstruction. Bioma-
                 Micron-scale spatially patterned, covalently immobilized   terials, vol.24(13): 2309–2316.
                 vascular  endothelial  growth  factor  on  hydrogels  acc-  http://dx.doi.org/10.1016/S0142-9612(03)00110-8
                 elerates  endothelial  tubulogenesis  and  increases  cellular   66.  Asakawa  N,  Shimizu  T,  Tsuda  Y,  et  al.  2010,  Pre-va-
                 angiogenic  responses.  Tissue   Engineering.  Part  A,   scularization  of  in  vitro  three-dimensional  tissues  cre-
                 vol.17(1–2): 221–229.                             ated by cell sheet engineering. Biomaterials, vol.31(14):
                 http://dx.doi.org/10.1089/ten.TEA.2010.0202       3903–3909.
             56.  Nichol J W, Koshy S T, Bae H, et  al.  2010, Cell-laden   http://dx.doi.org/10.1016/j.biomaterials.2010.01.105
                 microengineered  gelatin  methacrylate  hydrogels.  Biom-  67.  Muraoka M, Shimizu T, Itoga K, et al. 2013, Control of
                 aterials, vol.31(21): 5536–5544.                  the  formation  of va scular  networks  in  3D  tissue
                 http://dx.doi.org/10.1016/j.biomaterials.2010.03.064   engineered constructs. Biomaterials, vol.34(3): 696–703.
             57.   Park J H, Chung B G, Lee W G, et al. 2010, Microporous   http://dx.doi.org/10.1016/j.biomaterials.2012.10.009
                 cell-laden  hydrogels  for  engineered  tissue  constructs.   68.  Shimizu T, Sekine H, Yang J, et al. 2006, Polysurgery of
                 Biotechnology and Bioengineering, vol.106(1): 138–148.     cell  sheet  grafts  overcomes  diffusion  limits  to  produce
                 http://dx.doi.org/10.1002/bit.22667               thick,  vascularized  myocardial  tissues.  The  FASEB
             58.  Yao L, de Ruiter G C W, Wang H, et al. 2010, Controlling   Journal, vol.20(6): 1–20.
                 dispersion  of a xonal  regeneration  using  a  multichannel   http://dx.doi.org/10.1096/fj.05-4715fje
                 collagen nerve conduit. Biomaterials,  vol.31(22): 5789–   69.  Sakaguchi  K,  Shimizu  T,  Horaguchi  S,  et  al.  2013,  In
                 5797. http://dx.doi.org/10.1016/j.biomaterials.2010.03.081   vitro  engineering  of va scularized  tissue  surrogates.
             59.  Chrobak K M, Potter D R and Tien J, 2006, Formation of   Scientific Reports, vol.3: 1316.
                 perfused,  functional  microvascular  tubes  in  vitro.   http://dx.doi.org/10.1038/srep01316
                 Microvascular Research, vol.71(3): 185–196.     70.  Sekine  H,  Shimizu T,  Hobo  K, et  al.  2008, Endothelial
                 http://dx.doi.org/10.1016/j.mvr.2006.02.005       cell  coculture  within  tissue-engineered  cardiomyocyte
             60.  Sadr  N,  Zhu  M,  Osaki  T,  et  al.  2011,  SAM-based  cell   sheets enhances neovascularization and improves cardiac
                 transfer to photopatterned hydrogels for microengineering   function  of  ischemic  hearts.  Circulation,  vol.118(14
                 vascular-like structures. Biomaterials, vol. 32(30): 7479–   Suppl): 145–153.
                 7490.                                             http://dx.doi.org/10.1161/CIRCULATIONAHA.107.757286
                 http://dx.doi.org/10.1016/j.biomaterials.2011.06.034   71.  Wong  H  K,  Ivan  Lam  C R ,  Wen  F,  et  al.  2016,  Novel
             61.  Yoshida  H,  Matsusaki  M  and  Akashi  M,  2013,   method  to  improve  vascularization  of  tissue  engineered
                 Multilayered  blood  capillary  analogs  in  biodegradable   constructs  with  biodegradable  fibers.  Biofabrication,
                 hydrogels for in vitro drug permeability assays. Advanced   vol.8(1): 15004.
                 Functional Materials, vol.23(14): 1736–1742.      http://dx.doi.org/10.1088/1758-5090/8/1/015004
                 http://dx.doi.org/10.1002/adfm.201370069      72.  Nishiguchi  A,  Yoshida  H,  Matsusaki  M,  et  al.  2011,
             62.  Price G M, Wong K H K, Truslow J G, et al. 2010, Effect   Rapid  construction  of t hree-dimensional  multilayered
                 of  mechanical  factors  on  the  function  of  engineered   tissues with endothelial tube networks by the  cell-accu-
                 human blood microvessels in microfluidic collagen gels.   mulation  technique.  Advanced  Materials,  vol.23(31):
                 Biomaterials, vol.31(24): 6182–6189.              3506–3510.
                 http://dx.doi.org/10.1016/j.biomaterials.2010.04.041   http://dx.doi.org/10.1002/adma.201101787





                                        International Journal of Bioprinting (2017)–Volume 3, Issue 1      17
   16   17   18   19   20   21   22   23   24   25   26