Page 10 - IJB-3-2
P. 10
Post-printing surface modification and functionalization of 3D-printed biomedical device
https://dx.doi.org/10.1016/j.jmapro.2009.03.002 https://dx.doi.org/10.1080/07853890701881788
3. Yang S, Leong K-F, Du Z, et al., 2002, The design of 15. Wong K C, Kumta S M, Geel N V, et al., 2015, One-step
scaffolds for use in tissue engineering. Part II. Rapid reconstruction with a 3D-printed, biomechanically eva-
prototyping techniques. Tissue Engineering, vol.8(1): luated custom implant after complex pelvic tumor resec-
1–11. tion. Computer Aided Surgery, vol.20(1): 14–23.
https://dx.doi.org/10.1089/107632702753503009 https://dx.doi.org/10.3109/10929088.2015.1076039
4. Yeong W-Y, Chua C-K, Leong K-F, et al., 2004, Rapid 16. Bhattacharjee N, Urrios A, Kang S, et al., 2016, The up-
prototyping in tissue engineering: Challenges and poten- coming 3D-printing revolution in microfluidics. Lab on a
tial. Trends in Biotechnology, vol.22(12): 643–652. Chip, vol.16(10): 1720–1742.
https://dx.doi.org/10.1016/j.tibtech.2004.10.004 https://dx.doi.org/10.1039/C6LC00163G
5. Gross B C, Erkal J L, Lockwood S Y, et al., 2014, Evalu- 17. Au A K, Huynh W, Horowitz L F, et al., 2016, 3D-Printed
ation of 3D printing and its potential impact on biotech- microfluidics. Angewandte Chemie International Edition,
nology and the chemical sciences. Analytical Chemistry, vol.55(12): 3862–3881.
vol.86(7): 3240–3253. https://dx.doi.org/10.1002/anie.201504382
https://dx.doi.org/10.1021/ac403397r 18. Lee J M, Zhang M, and Yeong W Y, 2016, Characteriza-
6. D'Aveni R, 2015, The 3-D printing revolution. Harvard tion and evaluation of 3D printed microfluidic chip
Business Review, vol.2015(May): 40–48. for cell processing. Microfluidics and Nanofluidics,
7. Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al., vol.20(1): 1–15.
2010, 3D printing based on imaging data: Review of https://dx.doi.org/10.1007/s10404-015-1688-8
medical applications. International Journal of Computer 19. Au A K, Bhattacharjee N, Horowitz L F, et al., 2015,
Assisted Radiology and Surgery, vol.5(4): 335–341. 3D-printed microfluidic automation. Lab on a Chip, vol.
https://dx.doi.org/10.1007/s11548-010-0476-x 15(8): 1934–1941.
8. Singare S, Lian Q, Ping Wang W, et al., 2009, Rapid https://dx.doi.org/10.1039/c5lc00126a
prototyping assisted surgery planning and custom implant 20. Waheed S, Cabot J M, Macdonald N P, et al., 2016, 3D
design. Rapid Prototyping Journal, vol.15(1): 19–23. printed microfluidic devices: Enablers and barriers. Lab
https://dx.doi.org/10.1108/13552540910925027 on a Chip, vol.16(11): 1993–2013.
9. Zein N N, Hanouneh I A, Bishop P D, et al., 2013, Three- https://dx.doi.org/10.1039/C6LC00284F
dimensional print of a liver for preoperative planning in 21. Ho C M B, Ng S H, Li K H H, et al., 2015, 3D printed
living donor liver transplantation. Liver Transplantation, microfluidics for biological applications. Lab on a Chip,
vol.19(12): 1304–1310. vol.15(18): 3627–3637.
https://dx.doi.org/10.1002/lt.23729 https://dx.doi.org/10.1039/C5LC00685F
10. Scalfani V F and Vaid T P, 2014, 3D printed molecules 22. MacDonald E and Wicker R, 2016, Multiprocess 3D
and extended solid models for teaching symmetry and printing for increasing component functionality. Science,
point groups. Journal Chemical Education, vol.91(8): vol.353(6307): aaf2093.
1174–1180. https://dx.doi.org/10.1126/science.aaf2093
https://dx.doi.org/10.1021/ed400887t 23. Ge Q, Sakhaei A H, Lee H, et al., 2016, Multimaterial 4D
11. Tibbits S and Falvello A, 2013, Biomolecular, chiral and printing with tailorable shape memory polymers. Scien-
irregular self-assemblies, in Proceedings of the Associa- tific Reports, vol.6: 31110.
tion for Computer Aided Design in Architecture 2013: https://dx.doi.org/10.1038/srep31110
Adaptive Architecture. 2013: Waterloo, Canada. 24. Khoo Z X, Teoh J E M, Liu Y, et al., 2015, 3D printing of
12. Cheung H-Y, Lau K-T, Lu T-P, et al., 2007, A critical re- smart materials: A review on recent progresses in 4D
view on polymer-based bio-engineered materials for printing. Virtual and Physical Prototyping, vol.10(3):
scaffold development. Composites Part B: Engineering, 103–122.
vol.38(3): 291–300. https://dx.doi.org/10.1080/17452759.2015.1097054
https://dx.doi.org/10.1016/j.compositesb.2006.06.014 25. Gladman A S, Matsumoto E A, Nuzzo R G, et al., 2016,
13. Ho C M B, Ng S H, and Yoon Y-J, 2015, A review on 3D Biomimetic 4D printing. Nature Materials, vol.15.
printed bioimplants. International Journal of Precision https://dx.doi.org/10.1038/nmat4544
Engineering and Manufacturing, vol.16(5): 1035–1046. 26. An J, Chua C K, and Mironov V, 2016, A perspective on
https://dx.doi.org/10.1007/s12541-015-0134-x 4D bioprinting. International Journal of Bioprinting, vol
14. Peltola S M, Melchels F P W, Grijpma D W, et al., 2008, 2(1): 3–5.
A review of rapid prototyping techniques for tissue engi- http://dx.doi.org/10.18063/IJB.2016.01.003
neering purposes. Annals of Medicine, vol.40(4): 268–280. 27. Tibbits S, 2014, 4D printing: Multi-material shape change.
98 International Journal of Bioprinting (2017)–Volume 3, Issue 2

