Page 10 - IJB-3-2
P. 10

Post-printing surface modification and functionalization of 3D-printed biomedical device

                 https://dx.doi.org/10.1016/j.jmapro.2009.03.002   https://dx.doi.org/10.1080/07853890701881788
              3.  Yang  S,  Leong  K-F,  Du  Z,  et  al.,  2002,  The  design  of   15.  Wong K C, Kumta S M, Geel N V, et al., 2015, One-step
                 scaffolds  for  use  in  tissue  engineering.  Part  II.  Rapid   reconstruction  with  a  3D-printed,  biomechanically  eva-
                 prototyping  techniques.  Tissue  Engineering,  vol.8(1):   luated custom implant after complex pelvic tumor resec-
                 1–11.                                             tion. Computer Aided Surgery, vol.20(1): 14–23.
                 https://dx.doi.org/10.1089/107632702753503009     https://dx.doi.org/10.3109/10929088.2015.1076039
              4.  Yeong W-Y, Chua C-K, Leong K-F, et al., 2004, Rapid   16.  Bhattacharjee N, Urrios A, Kang S, et al., 2016, The up-
                 prototyping in tissue engineering: Challenges and poten-  coming 3D-printing revolution in microfluidics. Lab on a
                 tial. Trends in Biotechnology, vol.22(12): 643–652.     Chip, vol.16(10): 1720–1742.
                 https://dx.doi.org/10.1016/j.tibtech.2004.10.004   https://dx.doi.org/10.1039/C6LC00163G
              5.  Gross B C, Erkal J L, Lockwood S Y, et al., 2014, Evalu-  17.  Au A K, Huynh W, Horowitz L F, et al., 2016, 3D-Printed
                 ation of 3D printing and its potential impact on biotech-  microfluidics. Angewandte Chemie International Edition,
                 nology and the chemical sciences. Analytical Chemistry,   vol.55(12): 3862–3881.
                 vol.86(7): 3240–3253.                             https://dx.doi.org/10.1002/anie.201504382
                 https://dx.doi.org/10.1021/ac403397r           18.  Lee J M, Zhang M, and Yeong W Y, 2016, Characteriza-
              6.  D'Aveni R, 2015, The 3-D printing revolution. Harvard   tion  and  evaluation  of  3D  printed  microfluidic  chip
                 Business Review, vol.2015(May): 40–48.            for  cell  processing.  Microfluidics  and  Nanofluidics,
              7.  Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al.,   vol.20(1): 1–15.
                 2010,  3D  printing  based  on  imaging  data:  Review  of   https://dx.doi.org/10.1007/s10404-015-1688-8
                 medical applications. International Journal of Computer   19.  Au  A  K,  Bhattacharjee  N,  Horowitz  L  F,  et  al.,  2015,
                 Assisted Radiology and Surgery, vol.5(4): 335–341.     3D-printed microfluidic automation. Lab on a Chip, vol.
                 https://dx.doi.org/10.1007/s11548-010-0476-x      15(8): 1934–1941.
              8.  Singare  S,  Lian  Q,  Ping  Wang  W,  et  al.,  2009,  Rapid   https://dx.doi.org/10.1039/c5lc00126a
                 prototyping assisted surgery planning and custom implant   20.  Waheed S, Cabot J M, Macdonald N P, et al., 2016, 3D
                 design. Rapid Prototyping Journal, vol.15(1): 19–23.   printed microfluidic devices:  Enablers and barriers. Lab
                 https://dx.doi.org/10.1108/13552540910925027      on a Chip, vol.16(11): 1993–2013.
              9.  Zein N N, Hanouneh I A, Bishop P D, et al., 2013, Three-   https://dx.doi.org/10.1039/C6LC00284F
                 dimensional print of a liver for preoperative planning in   21.  Ho C M B, Ng S H, Li K H H, et al., 2015, 3D printed
                 living donor liver transplantation. Liver Transplantation,   microfluidics for biological applications. Lab on a Chip,
                 vol.19(12): 1304–1310.                            vol.15(18): 3627–3637.
                 https://dx.doi.org/10.1002/lt.23729               https://dx.doi.org/10.1039/C5LC00685F
              10.  Scalfani V F and Vaid T P, 2014, 3D printed molecules   22.  MacDonald  E  and  Wicker  R,  2016,  Multiprocess  3D
                 and  extended  solid  models  for  teaching  symmetry  and   printing for increasing component functionality. Science,
                 point  groups.  Journal  Chemical  Education,  vol.91(8):   vol.353(6307): aaf2093.
                 1174–1180.                                        https://dx.doi.org/10.1126/science.aaf2093
                 https://dx.doi.org/10.1021/ed400887t           23.  Ge Q, Sakhaei A H, Lee H, et al., 2016, Multimaterial 4D
              11.  Tibbits S and Falvello A, 2013, Biomolecular, chiral and   printing  with tailorable shape  memory polymers. Scien-
                 irregular self-assemblies, in Proceedings of the Associa-  tific Reports, vol.6: 31110.
                 tion  for  Computer  Aided  Design  in  Architecture  2013:   https://dx.doi.org/10.1038/srep31110
                 Adaptive Architecture. 2013: Waterloo, Canada.   24.  Khoo Z X, Teoh J E M, Liu Y, et al., 2015, 3D printing of
              12.  Cheung H-Y, Lau K-T, Lu T-P, et al., 2007, A critical re-  smart  materials:  A  review  on  recent  progresses  in  4D
                 view  on  polymer-based  bio-engineered  materials  for   printing.  Virtual  and  Physical  Prototyping,  vol.10(3):
                 scaffold  development.  Composites Part B: Engineering,   103–122.
                 vol.38(3): 291–300.                               https://dx.doi.org/10.1080/17452759.2015.1097054
                 https://dx.doi.org/10.1016/j.compositesb.2006.06.014   25.  Gladman A S, Matsumoto E A, Nuzzo R G, et al., 2016,
              13.  Ho C M B, Ng S H, and Yoon Y-J, 2015, A review on 3D   Biomimetic 4D printing. Nature Materials, vol.15.
                 printed  bioimplants.  International  Journal  of  Precision   https://dx.doi.org/10.1038/nmat4544
                 Engineering and Manufacturing, vol.16(5): 1035–1046.     26.  An J, Chua C K, and Mironov V, 2016, A perspective on
                 https://dx.doi.org/10.1007/s12541-015-0134-x      4D bioprinting. International Journal of Bioprinting, vol
              14.  Peltola S M, Melchels F P W, Grijpma D W, et al., 2008,   2(1): 3–5.
                 A review of rapid prototyping techniques for tissue engi-  http://dx.doi.org/10.18063/IJB.2016.01.003
                 neering purposes. Annals of Medicine, vol.40(4): 268–280.     27.  Tibbits S, 2014, 4D printing: Multi-material shape change.
            98                          International Journal of Bioprinting (2017)–Volume 3, Issue 2
   5   6   7   8   9   10   11   12   13   14   15