Page 11 - IJB-3-2
P. 11

Yi Zhang

                 Architectural Design, vol.84(1): 116-121.         https://dx.doi.org/10.1016/j.msec.2015.06.028
                 https://dx.doi.org/10.1002/ad.1710             37.  Lee  H,  Dellatore S M, Miller  W M, et al., 2007, Mus-
              28.  Ilievski F, Mazzeo A D, Shepherd R F, et al., 2011, Soft   sel-inspired  surface  chemistry  for  multifunctional  coat-
                 robotics for chemists. Angewandte Chemie, vol.50(8): 1890–   ings. Science, vol.318(5849): 426–430.
                 1895.                                             https://dx.doi.org/10.1126/science.1147241
                 https://dx.doi.org/10.1002/anie.201006464      38.  Pensa E, Cortés E, Corthey G n, et al., 2012, The chemis-
              29.  Tan D, Li Y, Qi F, et al., 2007, Reduction in feature size   try  of  the  sulfur–gold  interface:  In  search  of  a  unified
                 of  two-photon  polymerization  using  SCR500.  Applied   model. Accounts of Chemical Research, vol.45(8): 1183–
                 Physics Letters, vol.90(7): 071106.               1192.
                 https://dx.doi.org/10.1063/1.2535504              https://dx.doi.org/10.1021/ar200260p
              30.  Grimes A, Breslauer D N, Long M, et al., 2008, Shrinky-   39.  Wang X, Cai X, Guo Q, et al., 2013, i3DP, a robust 3D
                 Dink microfluidics: Rapid generation of deep and round-  printing approach  enabling genetic post-printing surface
                 ed patterns. Lab on a Chip, vol.8(1): 170–172.     modification.  Chemical  Communications,  vol.49(86):
                 https://dx.doi.org/10.1039/b711622e               10064–10066.
              31.  Chia H N and Wu B M, 2015, Recent advances in 3D   https://dx.doi.org/10.1039/c3cc45817b
                 printing of biomaterials. Journal of Biological Engineer-  40.  Valeur  E  and  Bradley  M,  2009,  Amide  bond  for-
                 ing, vol.9(1): 4.                                 mation: beyond the myth of coupling reagents. Chemical
                 https://dx.doi.org/10.1186/s13036-015-0001-4      Society Reviews, vol.38(2): 606–631.
              32.  Kang S M, Hwang N S, Yeom J, et al., 2012, One-step   https://dx.doi.org/10.1039/B701677H
                 multipurpose surface functionalization by adhesive cate-  41.  Kolb  H  C,  Finn  M  G,  and  Sharpless  K  B,  2001,
                 cholamine.  Advanced  Functional  Materials,  vol.22(14):   Click  chemistry:  Diverse  chemical function from a few
                 2949–2955.                                        good  reactions.  Angewandte  Chemie  International  Edi-
                 https://dx.doi.org/10.1002/adfm.201200177         tion, vol.40(11): 2004–2021.
              33.  Lee S J, Lee D, Yoon T R, et al., 2016, Surface modifica-  https://dx.doi.org/10.1002/1521-3773(20010601)40:11<2
                 tion  of  3D-printed  porous  scaffolds  via  mussel-inspired   004::AID-ANIE2004>3.0.CO;2-5
                 polydopamine and effective immobilization of rhBMP-2   42.  Banerjee I, Pangule R C, and Kane R S, 2011, Antifoul-
                 to promote osteogenic differentiation for bone tissue en-  ing  coatings: recent developments in the design of sur-
                 gineering. Acta Biomaterialia, vol.40: 182–191.     faces that prevent fouling by proteins, bacteria, and ma-
                 https://dx.doi.org/10.1016/j.actbio.2016.02.006   rine organisms. Advanced Materials, vol.23(6): 690–718.
              34.  Yeh C-H, Chen Y-W, Shie M-Y, et al., 2015, Poly (do-  https://dx.doi.org/10.1002/adma.201001215
                 pamine)-assisted  immobilization  of  Xu  Duan  on  3D   43.  Sánchez-Salcedo S, Colilla M, Izquierdo-Barba I, et al.,
                 printed poly (lactic acid) scaffolds to up-regulate osteo-  2016, Preventing bacterial adhesion on scaffolds for bone
                 genic and angiogenic markers of bone marrow stem cells.   tissue engineering. International Journal of Bioprinting,
                 Materials, vol.8(7): 4299–4315.                   vol.2(1): 20–34.
                 https://dx.doi.org/10.3390/ma8074299              http://dx.doi.org/10.18063/IJB.2016.01.008
              35.  Liu Y, Ai K, and Lu L, 2014, Polydopamine and its de-  44.  Liu  L,  Chen  G,  Chao  T,  et  al.,  2008,  Reduced  fore-
                 rivative  materials:  Synthesis and promising applications   ign  body  reaction  to  implanted  biomaterials  by  surface
                 in energy, environmental, and biomedical fields. Chemi-  treatment  with  oriented  osteopontin.  Journal  of  Bio-
                 cal Reviews, vol.114(9): 5057–5115.               materials Science, Polymer Edition, vol.19(6): 821–835.
                 https://dx.doi.org/10.1021/cr400407a              https://dx.doi.org/10.1163/156856208784522083
              36.  Kao C-T, Lin C-C, Chen Y-W, et al., 2015, Poly (dopa-  45.  Oskui S M, Diamante G, Liao C, et al., 2015, Assessing
                 mine)  coating  of 3D printed poly (lactic acid) scaffolds   and  reducing  the  toxicity  of  3D-printed  parts.  Environ-
                 for bone tissue engineering. Materials Science and Engi-  mental Science & Technology Letters, vol.3(1): 1–6.
                 neering: C, vol.56: 165–173.                      https://dx.doi.org/10.1021/acs.estlett.5b00249













                                        International Journal of Bioprinting (2017)–Volume 3, Issue 2      99
   6   7   8   9   10   11   12   13   14   15   16