Page 32 - IJB-3-2
P. 32
Bioprinting of osteochondral tissues: A perspective on current gaps and future trends
271. https://dx.doi.org/10.1097/SLA.0000000000002141
https://dx.doi.org/10.1016/j.devcel.2008.07.002 92. Heinonen M, Oila O and Nordström K, 2006, Current issues
85. Fish J E, Santoro M M, Morton S U, et al., 2008, miR-
in the regulation of human tissue-engineering products in the
126 regulates angiogenic signaling and vascular integrity. European Union. Tissue Engineering, vol.11: 1905–1911.
Developmental Cell, vol.15(2): 272–284.
https://dx.doi.org/10.1016/j.devcel.2008.07.008 https://dx.doi.org/10.1089/ten.2005.11.1905
86. Szpalski C, Barbaro M, Sagebin F, et al., 2012, Bone tissue 93. Yanke A B and Chubinskaya S, 2015, The state of cartilage
engineering: Current strategies and techniques—Part II: Cell regeneration: Current and future technologies. Current Re-
types. Tissue Engineering Part B: Reviews, vol.18: 258–269. views in Musculoskeletal Medicines, vol.8: 1–8.
https://dx.doi.org/10.1089/ten.teb.2011.0440 https://dx.doi.org/10.1007/s12178-014-9254-7
87. Szpalski C, Wetterau M, Barr J, et al., 2011, Bone tissue 94. Yu Y, Moncal K K, Li J, et al., 2016, Three-dimensional
engineering: Current strategies and techniques—Part I: Scaf- bioprinting using self-assembling scalable scaffold-free “tissue
folds. Tissue Engineering Part B: Reviews, vol.18: 246–257.
https://dx.doi.org/10.1089/ten.teb.2011.0427 strands” as a new bioink. Scientific Reports, vol.6: 28714.
88. Karlsen T A, Jakobsen R B, Mikkelsen T S, et al., 2013, https://dx.doi.org/10.1038/srep28714
microRNA-140 targets RALA and regulates chondrogenic 95. Marco F, Lopez-Oliva F, Fedz-Arroyo J M F, et al., 1993,
differentiation of human mesenchymal stem cells by trans- Osteochondral allografts for osteochondritis dissecans
lational enhancement of SOX9 and ACAN. Stem Cells and and osteonecrosis of the femoral condyles. International
Development, vol.23: 290–304. Orthopaedics, vol.17: 104–108.
https://dx.doi.org/10.1089/scd.2013.0209 https://dx.doi.org/10.1007/BF00183551
89. Gurusinghe S and Strappe P, 2014, Gene modification of
mesenchymal stem cells and articular chondrocytes to enhance 96. Martín-Cartes J A, Tamayo-López M J and Bustos-Jiménez
chondrogenesis. BioMed Research International, 2014: M, 2016, “Sandwich” technique in the treatment of large and
369528. complex incisional hernias. ANZ Journal of Surgery, vol.86:
https://dx.doi.org/10.1155/2014/369528 343–347.
90. Peng W, Unutmaz D and Ozbolat I T, 2016, Bioprinting https://dx.doi.org/10.1111/ans.13285
towards physiologically relevant tissue models for pharma- 97. Peterson L, Minas T, Brittberg M, et al., 2003, Treatment
ceutics, Trends in Biotechnology, vol.34: 722–732. of osteochondritis dissecans of the knee with autologous
https://dx.doi.org/10.1016/j.tibtech.2016.05.013
91. Ravnic D J, Leberfinger A N, Koduru S V, et al., 2017, chondrocyte transplantation: Results at two to ten years. The
Transplantation of bioprinted tissues and organs: Technical Journal of Bone & Joint Surgery – American Volume, vol.
and clinical challenges and future perspectives. Annuals of 85A(Suppl 2): 17–24.
Surgery, vol.266(1): 48–58. https://dx.doi.org/10.2106/00004623-200300002-00003
120 International Journal of Bioprinting (2017)–Volume 3, Issue 2

