Page 30 - IJB-3-2
P. 30

Bioprinting of osteochondral tissues: A perspective on current gaps and future trends

             microtissue—Preliminary results. In Vivo, vol.26(2): 251–257.  54. Ozbolat I T, Peng W and Ozbolat V, 2016, Application areas
           44. Makris E A, Gomoll A H, Malizos K N, et al., 2015, Repair   of 3D bioprinting. Drug Discovery Today, vol.21: 1257–1271.
             and tissue engineering techniques for articular cartilage.   https://dx.doi.org/10.1016/j.drudis.2016.04.006
             Nature Reviews Rheumatology, vol.11(1): 21–34.    55. Ozbolat I T, Moncal K K and Gudapati H, 2017, Evaluation
              https://dx.doi.org/10.1038/nrrheum.2014.157.       of bioprinter technologies. Additive Manufacturing, vol.13:
           45. Schek R M, Taboas J M, Segvich S J, et al., 2004, Engineered   179–200.
             osteochondral grafts using biphasic composite solid free-form   https://dx.doi.org/10.1016/j.addma.2016.10.003
             fabricated scaffolds. Tissue Engineering, vol.10: 1376–1385.    56. Ozbolat I T and Hospodiuk M, 2016, Current advances
              https://dx.doi.org/10.1089/ten.2004.10.1376        and future perspectives in extrusion-based bioprinting.
           46. Zhang W, Lian Q, Li D, et al., 2014, Cartilage repair and   Biomaterials, vol.76: 321–343.
             subchondral bone migration using 3D printing osteochondral   https://dx.doi.org/10.1016/j.biomaterials.2015.10.076
             composites: A one-year-period study in rabbit trochlea.   57. Gudapati H, Dey M and Ozbolat I T, 2016, A comprehensive
             BioMed Research International, vol.2014: 746138.    review on droplet-based bioprinting: Past, present and future.
              https://dx.doi.org/10.1155/2014/746138             Biomaterials, vol.102: 20–42.
           47. Cao T, Ho K-H and Teoh S-H, 2003, Scaffold design and in   https://dx.doi.org/10.1016/j.biomaterials.2016.06.012
             vitro study of osteochondral coculture in a three-dimensional   58. Ozbolat I T, 2015, Bioprinting scale-up tissue and organ
             porous polycaprolactone scaffold fabricated by fused   constructs for transplantation. Trends in Biotechnology,
             deposition modeling. Tissue Engineering, vol.9(Suppl 1):   vol.33: 395–400.
             S103–S112.                                          https://dx.doi.org/10.1016/j.tibtech.2015.04.005
              https://dx.doi.org/10.1089/10763270360697012     59. Dababneh A B and Ozbolat I T, 2014, Bioprinting technology:
           48. Nowicki M A, Castro N J, Plesniak M W, et al., 2016,   A current state-of-the-art review. Journal of Manufacturing
             3D printing of novel osteochondral scaffolds with graded   Science and Engineering, vol.136(6): 61016.
             microstructure. Nanotechnology, vol.27: 414001.     https://dx.doi.org/10.1115/1.4028512
              https://dx.doi.org/10.1088/0957-4484/27/41/414001  60. Datta P, Ayan B and Ozbolat I T, 2017, Bioprinting for
           49. Castro N J, Patel R and Zhang L G, 2015, Design of a novel   vascular and vascularized tissue biofabrication. Acta Bio-
             3D printed bioactive nanocomposite scaffold for improved   materialia, vol.51: 1–20.
             osteochondral regeneration. Cellular and Molecular Bio-  https://dx.doi.org/10.1016/j.actbio.2017.01.035
             engineering, vol.8: 416–432.                      61. Ozbolat I T and Yu Y, 2013, Bioprinting toward organ fa-
              https://dx.doi.org/10.1007/s12195-015-0389-4       brication: Challenges and future trends. IEEE Transactions on
           50. Shao X X, Hutmacher D W, Ho S T, et al., 2006, Evaluation   Biomedical Engineering, vol.60: 60691–60699.
             of a hybrid scaffold/cell construct in repair of high-load-  https://dx.doi.org/10.1109/TBME.2013.2243912
             bearing osteochondral defects in rabbits. Biomaterials, vol.27:   62. Fedorovich N E, Schuurman W, Wijnberg H M, et al., 2011,
             1071–1080.                                          Biofabrication of osteochondral tissue equivalents by printing
              https://dx.doi.org/10.1016/j.biomaterials.2005.07.040  topologically defined, cell-laden hydrogel scaffolds. Tissue
           51. Cho D-W, Lee J-S, Jang J, et al., 2015, Tissue engineering:   Engineering Part C: Methods, vol.18: 33–44.
             Osteochondral tissue, In: Organ Printing, Bristol, UK:   https://dx.doi.org/10.1089/ten.tec.2011.0060
             Morgan & Claypool Publishers, 11.1–11.6.          63. Park J Y, Choi J C, Shim J H, et al., 2014, A comparative
           52. Chua C K, Leong K F, Sudarmadji N, et al., 2011, Selective   study on collagen type I and hyaluronic acid dependent cell
             laser sintering of functionally graded tissue scaffolds. MRS   behavior for osteochondral tissue bioprinting. Biofabrication,
             Bulletin, vol.36(12): 1006–1014.                    vol.6(3): 35004.
              https://dx.doi.org/10.1557/mrs.2011.271            https://dx.doi.org/10.1088/1758-5082/6/3/035004
           53. Du Y, Liu H, Yang Q, et al., 2017, Selective laser sintering   64. Gurkan U A, El Assal R, Yildiz S E, et al., 2014, Engineering
             scaffold with hierarchical architecture and gradient compo-  anisotropic biomimetic fibrocartilage microenvironment by
             sition for osteochondral repair in rabbits. Biomaterials,   bioprinting mesenchymal stem cells in nanoliter gel droplets.
             vol.137: 37–48.                                     Molecular Pharmacology, vol.11: 2151–2159.
              https://dx.doi.org/10.1016/j.biomaterials.2017.05.021  https://dx.doi.org/10.1021/mp400573g

           118                         International Journal of Bioprinting (2017)–Volume 3, Issue 2
   25   26   27   28   29   30   31   32   33   34   35