Page 31 - IJB-3-2
P. 31

Pallab Datta, et. al.

           65. Levato R, Visser J, Planell J A, et al., 2014, Biofabrication of   tissue/organ building. Journal of Micromechanics and
             tissue constructs by 3D bioprinting of cell-laden microcarriers.   Microengineering, vol.22(8): 85014.
             Biofabrication, vol.6: 35020.                       https://dx.doi.org/10.1088/0960-1317/22/8/085014
              https://dx.doi.org/10.1088/1758-5082/6/3/035020  76. Liu Y-Y, Yu H-C, Liu Y, et al., 2016, Dual drug spatiotemporal
           66. Sawkins M J, Brown B N, Bonassar L J, et al., 2011,   release from functional gradient scaffolds prepared using 3D
             Bioprinting as a tool for osteochondral tissue engineering.   bioprinting and electrospinning. Polymer Engineering and
             European Cells and Materials, vol.22: 51.           Science, vol.56(2): 170–177.
           67. Aydelottea M, Greenhill R and Kuettnerab K, 1988,   https://dx.doi.org/10.1002/pen.24239
             Differences between sub-populations of cultured bovine   77. Radhakrishnan J, Subramanian A, Krishnan U M, et al., 2017,
             articular chondrocytes. II. Proteoglycan metabolism. Con-  Injectable and 3D bioprinted polysaccharide hydrogels: From
             nective Tissue Research, vol.18(3): 223–234.        cartilage to osteochondral tissue engineering. Biomacro-
              https://dx.doi.org/10.3109/03008208809016809       molecules, vol.18: 1–26.
           68. Neu C P, Komvopoulos K and Reddi A H, 2008, The interface   https://dx.doi.org/10.1021/acs.biomac.6b01619
             of functional biotribology and regenerative medicine in   78. Luzi E, Marini F, Sala S C, et al., 2008, Osteogenic diffe-
             synovial joints. Tissue Engineering Part B: Reviews, vol.   rentiation of human adipose tissue-derived stem cells is
             14(3): 235–247.                                     modulated by the miR-26a targeting of the SMAD1 tran-
              https://dx.doi.org/10.1089/ten.teb.2008.0047       scription factor. Journal of Bone and Mineral Research,
           69. Clark J M and Huber J D, 1990, The structure of the human   vol.23(2): 287–295.
             subchondral plate. Journal of Bone & Joint Surgery – British   https://dx.doi.org/10.1359/jbmr.071011
             Volume, vol.72(5): 866–873.                       79. Schoolmeesters A, Eklund T, Leake D, et al., 2009, Functional
           70. MacBarb R F, Chen A L, Hu J C, et al., 2013, Engineering   profiling reveals critical role for miRNA in differentiation of
             functional anisotropy in fibrocartilage neotissues. Bio-  human mesenchymal stem cells. PLoS One, vol.4: e5605.
             materials, vol.34: 9980–9989.                       https://dx.doi.org/10.1371/journal.pone.0005605
              https://dx.doi.org/10.1016/j.biomaterials.2013.09.026  80. Mizuno Y, Yagi K, Tokuzawa Y, et al., 2008, miR-125b
           71. Hu J C Y and Athanasiou K A, 2003, Structure and function of   inhibits osteoblastic differentiation by down-regulation of
             articular cartilage, In: An YH and Martin KL (eds), Handbook   cell proliferation. Biochemical and Biophysics Research
             of Histology Methods in Bone and Cartilage. Totowa, NJ,   Communication, vol.368: 267–272.
             USA: Humana Press. 73–95.                           https://dx.doi.org/10.1016/j.bbrc.2008.01.073
              https://dx.doi.org/10.1007/978-1-59259-417-7_4   81. Mendonça R H, de Oliveira Meiga T, da Costa M F, et al.,
           72. Mouser V H M, Levato R, Bonassar L J, et al., 2016, Three-  2013, Production of 3D scaffolds applied to tissue engineering
             dimensional bioprinting and its potential in the field of arti-  using chitosan swelling as a porogenic agent. Journal of
             cular cartilage regeneration. Cartilage, 1–14.      Applied Polymer Science, vol.129(2): 614–625.
              https://dx.doi.org/10.1177/1947603516665445        https://dx.doi.org/10.1002/app.38735
           73. Kelly D J and Prendergast P J, 2006, Prediction of the optimal   82. Qureshi A T, Doyle A, Chen C, et al., 2015, Photoactivated
             mechanical properties for a scaffold used in osteochondral   miR-148b–nanoparticle conjugates improve closure of critical
             defect repair. Tissue Engineering, vol.12: 2509–2519.    size mouse calvarial defects. Acta Biomaterialia, vol.12: 166–
              https://dx.doi.org/10.1089/ten.2006.12.ft-202      173.
           74. Shim J-H, Jang K-M, Hahn S K, et al., 2016, Three-  https://dx.doi.org/10.1016/j.actbio.2014.10.010
             dimensional bioprinting of multilayered constructs containing   83. Qureshi A T, Monroe W T, Dasa V, et al., 2013, miR-148b–
             human mesenchymal stromal cells for osteochondral tissue   nanoparticle conjugates for light mediated osteogenesis of
             regeneration in the rabbit knee joint. Biofabrication, vol.8:   human adipose stromal/stem cells. Biomaterials, vol.34(31):
             14102.                                              7799–7810.
              https://dx.doi.org/10.1088/1758-5090/8/1/014102     https://dx.doi.org/10.1016/j.biomaterials.2013.07.004
           75. Shim J, Lee J, Kim J, et al., 2012, Bioprinting of a mecha-  84. Wang S, Aurora A B, Johnson B A, et al.,  2008, The
             nically enhanced three-dimensional dual cell-laden construct   endothelial-specific microRNA miR-126 governs vascular
             for osteochondral tissue engineering using a multi-head   integrity and angiogenesis. Developmental Cell, vol.15: 261–

                                       International Journal of Bioprinting (2017)–Volume 3, Issue 2       119
   26   27   28   29   30   31   32   33   34   35   36