Page 29 - IJB-3-2
P. 29

Pallab Datta, et. al.

             vol.8(4): 413–422.                                  https://dx.doi.org/10.1002/art.39049
              https://dx.doi.org/10.1007/s12178-015-9298-3     34. Ringe J, Burmester G R, Sittinger M, et al., 2012, Regene-
           25. Verhaegen J, Clockaerts S, Van Osch G J V M, et al., 2014,   rative medicine in rheumatic disease—Progress in tissue
             TruFit Plug for repair of osteochondral defects—Where is the   engineering. Nature Reviews Rheumatology, vol.8: 493–498.
             evidence? Systematic review of literature. Cartilage, vol.6:   https://dx.doi.org/10.1038/nrrheum.2012.98
             12–19.                                            35. Ozbolat I T, 2015, Scaffold-based or scaffold-free bioprinting:
              https://dx.doi.org/10.1177/1947603514548890        Competing or complementing approaches? Journal of
           26. Kon E, Filardo G, Di Martino A, et al., 2013, Clinical   Nanotechnology in Engineering and Medicine, vol.6: 24701.
             results and MRI evolution of a nano-composite multilayered   https://dx.doi.org/10.1115/1.4030414
             biomaterial for osteochondral regeneration at 5 years.   36. Niederauer G G, Slivka M A, Leatherbury N C, et al.,
             American Journal of Sports Medicine, vol.42: 158–165.   2000, Evaluation of multiphase implants for repair of focal
              https://dx.doi.org/10.1177/0363546513505434        osteochondral defects in goats. Biomaterials, vol.21: 2561–
           27. Levy Y D, Gorts S, Pulido P A, et al., 2013, Do fresh   2574.
             osteochondral allograft successfully treat femoral condyle   https://dx.doi.org/10.1016/S0142-9612(00)00124-1
             lesions? Clinical Orthopaedics and Related Research,   37. Schlichting K, Schell H, Kleemann R U, et al., 2008, Influence
             vol.471(1): 231–237.                                of scaffold stiffness on subchondral bone and subsequent
              https://dx.doi.org/10.1007/s11999-012-2556-4       cartilage regeneration in an ovine model of osteochondral
           28. Appelman T P, Mizrahi J, Elisseeff J H, et al., 2011, The   defect healing. American Journal of Sports Medicine, vol.36:
             influence of biological motifs and dynamic mechanical   2379–2391.
             stimulation in hydrogel scaffold systems on the phenotype of   https://dx.doi.org/10.1177/0363546508322899
             chondrocytes. Biomaterials, vol.32: 1508–1516.    38. Jiang C-C, Chiang H, Liao C-J, et al., 2007, Repair of porcine
              https://dx.doi.org/10.1016/j.biomaterials.2010.10.017  articular cartilage defect with a biphasic osteochondral
           29. Johnstone B and Yoo J, 2001, Mesenchymal cell transfer   composite. Journal of Orthopaedic Research, vol.25: 1277–
             for articular cartilage repair. Experts Opinion on Biological   1290.
             Therapy, vol.1(6): 915–921.                          https://dx.doi.org/10.1002/jor.20442
              https://dx.doi.org/10.1517/14712598.1.6.915      39. Schagemann J C, Erggelet C, Chung H-W, et al., 2008, Cell-
           30. Koga H, Engebretsen L, Brinchmann J E, et al., 2009,   laden and cell-free biopolymer hydrogel for the treatment of
             Mesenchymal stem cell-based therapy for cartilage repair:   osteochondral defects in a sheep model. Tissue Engineering
             A review. Knee Surgery, Sports Traumatology, Arthroscopy,   Part A, vol.15(1): 75–82.
             vol.17: 1289–1297.                                   https://dx.doi.org/10.1089/ten.tea.2008.0087
              https://dx.doi.org/10.1007/s00167-009-0782-4     40. Kon E, Filardo G, Perdisa F, et al., 2014, Clinical results of
           31. Park S and Im G, 2014, Embryonic stem cells and induced   multilayered biomaterials for osteochondral regeneration.
             pluripotent stem cells for skeletal regeneration. Tissue   Journal of Experimental Orthopaedics, vol.1: 10.
             Engineering Part B: Reviews, vol.20(5): 1–11.        https://dx.doi.org/10.1186/s40634-014-0010-0
              https://dx.doi.org/10.1089/ten.teb.2013.0530     41. Quarch V M A, Enderle E, Lotz J, et al., 2014, Fate of large
           32. Diekman B O, Christoforou N, Willard V P, et al., 2012,   donor site defects in osteochondral transfer procedures in
             Cartilage tissue engineering using differentiated and purified   the knee joint with and without TruFit Plugs. Archives of
             induced pluripotent stem cells. Proceedings of the National   Orthopaedic and Trauma Surgery, vol.134(5): 657–666.
             Academic of Sciences, vol.109: 19172–19177.          https://dx.doi.org/10.1007/s00402-014-1930-y
              https://dx.doi.org/10.1073/pnas.1210422109       42. Gelber P E, Batista J, Millan-Billi A, et al., 2014, Magnetic
           33. Yu Y, Brouillette M J, Seol D, et al., 2015, Use of recombinant   resonance evaluation of TruFit® plugs for the treatment of
             human stromal cell-derived factor 1 α-loaded fibrin/hya-  osteochondral lesions of the knee shows the poor charac-
             luronic acid hydrogel networks to achieve functional repair   teristics of the repair tissue. The Knee, vol.21: 827–832.
             of full-thickness bovine articular cartilage via homing of   https://dx.doi.org/10.1016/j.knee.2014.04.013
             chondrogenic progenitor cells. Arthritis & Rheumatology,   43. Meyer U, Wiesmann H P, Libera J, et al., 2012, Cartilage
             vol.67(5): 1274–1285.                               defect regeneration by ex vivo engineered autologous

                                       International Journal of Bioprinting (2017)–Volume 3, Issue 2       117
   24   25   26   27   28   29   30   31   32   33   34