Page 179 - IJB-10-3
P. 179
International Journal of Bioprinting 3D bone: Current & future
103. Sun X, Ma Z, Zhao X, et al. Three-dimensional bioprinting doi: 10.1038/s41598-017-01914-x
of multicell-laden scaffolds containing bone morphogenic 110. Park JY, Shim JH, Choi SA, et al. 3D printing technology to
protein-4 for promoting M2 macrophage polarization and control BMP-2 and VEGF delivery spatially and temporally
accelerating bone defect repair in diabetes mellitus. Bioact
Mater. 2021;6(3):757-769. to promote large-volume bone regeneration. J Mater Chem
doi: 10.1016/j.bioactmat.2020.08.030 B. 2015;3(27):5415-5425.
doi: 10.1039/c5tb00637f
104. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D
bioprinting system to produce human-scale tissue constructs 111. Keller L, Regiel-Futyra A, Gimeno M, et al. Chitosan-
with structural integrity. Nat Biotechnol. 2016;34(3):312-319. based nanocomposites for the repair of bone defects.
doi: 10.1038/nbt.3413 Nanomedicine. 2017;13(7):2231-2240.
doi: 10.1016/j.nano.2017.06.007
105. Rukavina P, Koch F, Wehrle M, et al. In vivo evaluation of
bioprinted prevascularized bone tissue. Biotechnol Bioeng. 112. Korn P, Ahlfeld T, Lahmeyer F, et al. 3D printing of bone
2020;117(12):3902-3911. grafts for cleft alveolar osteoplasty - in vivo evaluation
doi: 10.1002/bit.27527 in a preclinical model. Front Bioeng Biotechnol. 2020;
8:217.
106. Loozen LD, Wegman F, Oner FC, Dhert WJA, Alblas J. doi: 10.3389/fbioe.2020.00217
Porous bioprinted constructs in BMP-2 non-viral gene
therapy for bone tissue engineering. J Mater Chem B. 113. Liu X, Miao Y, Liang H, et al. 3D-printed bioactive ceramic
2013;1(48):6619-6626. scaffolds with biomimetic micro/nano-HAp surfaces mediated
doi: 10.1039/c3tb21093f cell fate and promoted bone augmentation of the bone-implant
interface in vivo. Bioact Mater. 2022;12:120-132.
107. Dubey N, Ferreira JA, Malda J, Bhaduri SB, Bottino MC. doi: 10.1016/j.bioactmat.2021.10.016
Extracellular matrix/amorphous magnesium phosphate
bioink for 3D bioprinting of craniomaxillofacial bone tissue. 114. Nulty J, Freeman FE, Browe DC, et al. 3D bioprinting of
ACS Appl Mater Interfaces. 2020;12(21):23752-23763. prevascularised implants for the repair of critically-sized
doi: 10.1021/acsami.0c05311 bone defects. Acta Biomater. 2021;126:154-169.
doi: 10.1016/j.actbio.2021.03.003
108. Zhai X, Ruan C, Ma Y, et al. 3D-bioprinted osteoblast-
laden nanocomposite hydrogel constructs with induced 115. Piard C, Baker H, Kamalitdinov T, Fisher J. Bioprinted
microenvironments promote cell viability, differentiation, osteon-like scaffolds enhance in vivo neovascularization.
and osteogenesis both in vitro and in vivo. Adv Sci (Weinh). Biofabrication. 2019;11(2):025013.
2018;5(3):1700550. doi: 10.1088/1758-5090/ab078a
doi: 10.1002/advs.201700550 116. Daly AC, Pitacco P, Nulty J, Cunniffe GM, Kelly DJ. 3D printed
109. Keriquel V, Oliveira H, Remy M, et al. In situ printing of microchannel networks to direct vascularisation during
mesenchymal stromal cells, by laser-assisted bioprinting, for in endochondral bone repair. Biomaterials. 2018;162:34-46.
vivo bone regeneration applications. Sci Rep. 2017;7(1):1778. doi: 10.1016/j.biomaterials.2018.01.057
Volume 10 Issue 3 (2024) 171 doi: 10.36922/ijb.2056

