Page 179 - IJB-10-3
P. 179

International Journal of Bioprinting                                           3D bone: Current & future




            103. Sun X, Ma Z, Zhao X, et al. Three-dimensional bioprinting      doi: 10.1038/s41598-017-01914-x
               of multicell-laden scaffolds containing bone morphogenic   110. Park JY, Shim JH, Choi SA, et al. 3D printing technology to
               protein-4 for promoting M2 macrophage polarization and   control BMP-2 and VEGF delivery spatially and temporally
               accelerating bone defect repair in diabetes mellitus. Bioact
               Mater. 2021;6(3):757-769.                          to promote large-volume bone regeneration. J Mater Chem
               doi: 10.1016/j.bioactmat.2020.08.030               B. 2015;3(27):5415-5425.
                                                                  doi: 10.1039/c5tb00637f
            104. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D
               bioprinting system to produce human-scale tissue constructs   111. Keller  L,  Regiel-Futyra  A,  Gimeno  M,  et  al.  Chitosan-
               with structural integrity. Nat Biotechnol. 2016;34(3):312-319.  based nanocomposites for the repair of bone defects.
               doi: 10.1038/nbt.3413                              Nanomedicine. 2017;13(7):2231-2240.
                                                                  doi: 10.1016/j.nano.2017.06.007
            105. Rukavina P, Koch F, Wehrle M, et al. In vivo evaluation of
               bioprinted prevascularized bone tissue.  Biotechnol  Bioeng.   112. Korn P, Ahlfeld T, Lahmeyer F, et al. 3D printing of bone
               2020;117(12):3902-3911.                            grafts for cleft alveolar osteoplasty - in vivo evaluation
               doi: 10.1002/bit.27527                             in a preclinical model.  Front Bioeng Biotechnol. 2020;
                                                                  8:217.
            106. Loozen LD, Wegman F, Oner FC, Dhert WJA, Alblas J.      doi: 10.3389/fbioe.2020.00217
               Porous bioprinted constructs in BMP-2 non-viral gene
               therapy for bone tissue engineering.  J Mater Chem B.   113.  Liu X, Miao Y, Liang H, et al. 3D-printed bioactive ceramic
               2013;1(48):6619-6626.                              scaffolds with biomimetic micro/nano-HAp surfaces mediated
               doi: 10.1039/c3tb21093f                            cell fate and promoted bone augmentation of the bone-implant
                                                                  interface in vivo. Bioact Mater. 2022;12:120-132.
            107. Dubey N, Ferreira JA,  Malda J, Bhaduri SB, Bottino MC.      doi: 10.1016/j.bioactmat.2021.10.016
               Extracellular matrix/amorphous magnesium phosphate
               bioink for 3D bioprinting of craniomaxillofacial bone tissue.   114. Nulty J, Freeman FE, Browe DC, et al. 3D bioprinting of
               ACS Appl Mater Interfaces. 2020;12(21):23752-23763.  prevascularised implants for the repair of critically-sized
               doi: 10.1021/acsami.0c05311                        bone defects. Acta Biomater. 2021;126:154-169.
                                                                  doi: 10.1016/j.actbio.2021.03.003
            108. Zhai X, Ruan C, Ma Y, et al. 3D-bioprinted osteoblast-
               laden nanocomposite hydrogel constructs with induced   115. Piard C, Baker H, Kamalitdinov T, Fisher J. Bioprinted
               microenvironments promote cell viability, differentiation,   osteon-like scaffolds enhance in vivo neovascularization.
               and osteogenesis both in vitro and in vivo. Adv Sci (Weinh).   Biofabrication. 2019;11(2):025013.
               2018;5(3):1700550.                                 doi: 10.1088/1758-5090/ab078a
               doi: 10.1002/advs.201700550                     116.  Daly AC, Pitacco P, Nulty J, Cunniffe GM, Kelly DJ. 3D printed
            109. Keriquel V, Oliveira H, Remy M, et al. In situ printing of   microchannel networks to direct vascularisation during
               mesenchymal stromal cells, by laser-assisted bioprinting, for in   endochondral bone repair. Biomaterials. 2018;162:34-46.
               vivo bone regeneration applications. Sci Rep. 2017;7(1):1778.     doi: 10.1016/j.biomaterials.2018.01.057
































            Volume 10 Issue 3 (2024)                       171                                doi: 10.36922/ijb.2056
   174   175   176   177   178   179   180   181   182   183   184