Page 178 - IJB-10-3
P. 178

International Journal of Bioprinting                                           3D bone: Current & future




            80.  Alawi SA, Matschke J, Muallah D, Gelinksy M, Dragu A. 3D   in polyethylene glycol diacrylate hydrogel on osteogenesis
               bioprinting in plastic and reconstructive surgery: current   of bone marrow stromal cells.  Biomaterials. 2005;26(30):
               concepts, progress, and clinical application. Eur J Plast Surg.   5991-5998.
               2023;46:833-843.                                   doi: 10.1016/j.biomaterials.2005.03.018
               doi: 10.1007/s00238-023-02108-7
                                                               93.  Sousa AC, Biscaia S, Alvites R, et al. Assessment of
            81.  Yazdanpanah Z, Johnston JD, Cooper DML, Chen XB. 3D   3D-printed polycaprolactone, hydroxyapatite nanoparticles
               bioprinted scaffolds for bone tissue engineering: state-of-  and diacrylate poly(ethylene glycol) scaffolds for bone
               the-art and emerging technologies.  Front Bioeng Biotech.   regeneration. Pharmaceutics. 2022;14(12):2643.
               2022;10:824156.                                    doi: 10.3390/pharmaceutics14122643
               doi: 10.3389/fbioe.2022.824156
                                                               94.  Stillman ZS, Jarai BM, Raman N, Patel P, Fromen CA.
            82.  Lim W, Kim B, Moon YL. Three-dimensional bioprinting for   Degradation profiles of poly(ethylene glycol) diacrylate
               bone and cartilage transplantation. Ann Joint. 2019;4(1).  (PEGDA)-based hydrogel nanoparticles.  Polym Chem.
               doi: 10.21037/aoj.2018.12.06                       2020;11(2):568-580.
                                                                  doi: 10.1039/c9py01206k
            83.  Genova T, Roato I, Carossa M, Motta C, Cavagnetto D,
               Mussano F. Advances on bone substitutes through 3D   95.  Thrivikraman G, Athirasala A, Twohig C, Boda SK,
               bioprinting. Int J Mol Sci. 2020;21(19).           Bertassoni LE. Biomaterials for craniofacial bone
               doi: 10.3390/ijms21197012                          regeneration. Dent Clin North Am. 2017;61(4):835-856.
                                                                  doi: 10.1016/j.cden.2017.06.003
            84.  Abu Owida H. Developments and clinical applications
               of biomimetic tissue regeneration using 3D bioprinting   96.  Ahmed AG, Awartani FA Niazy AA, Jansen JA, Alghamdi HS.
               technique. Appl Bionics Biomech. 2022;2022: 2260216.  A combination of biphasic calcium phosphate (Maxresorb®)
               doi: 10.1155/2022/2260216                          and hyaluronic acid gel (Hyadent®) for repairing osseous
                                                                  defects in a rat model. Appl Sci. 2020;10(5):1651.
            85.  Su X, Wang T, Guo S. Applications of 3D printed bone      doi: 10.3390/app10051651
               tissue engineering scaffolds in the stem cell field. Regen Ther.
               2021;16:63-72.                                  97.  Genova T, Roato I, Carossa M, Motta C, Cavagnetto D,
               doi: 10.1016/j.reth.2021.01.007                    Mussano F. Advances on bone substitutes through 3D
                                                                  bioprinting. Int J Mol Sci. 2020;21(19):7012.
            86.  Hao Y, Cao B, Deng L, et al. The first 3D-bioprinted      doi: 10.3390/ijms21197012
               personalized active bone to repair bone defects: a case
               report. Int J Bioprint. 2023;9(2):654.          98.  Beheshtizadeh N, Azami M, Abbasi H, Farzin A. Applying
               doi: 10.18063/ijb.v9i2.654                         extrusion-based 3D printing technique accelerates fabricating
                                                                  complex biphasic calcium phosphate-based scaffolds for bone
            87.  Liu  C, Wang L,  Lu W,  et al. Computer  vision-aided   tissue regeneration. J Adv Res. 2022;40:69-94.
               bioprinting for bone research. Bone Res. 2022;10(1):21.     doi: 10.1016/j.jare.2021.12.012
               doi: 10.1038/s41413-022-00192-2
                                                               99.  Fedorovich NE, Schuurman W, Wijnberg HM, et al.
            88.  Wan  Z,  Zhang  P,  Liu  Y,  Lv  L,  Zhou  Y.  Four-dimensional   Biofabrication of osteochondral tissue equivalents by
               bioprinting: current developments and applications in bone   printing topologically defined, cell-laden hydrogel scaffolds.
               tissue engineering. Acta Biomater. 2020;101:26-42.  Tissue Eng Part C Methods. 2012;18(1):33-44.
               doi: 10.1016/j.actbio.2019.10.038
                                                                  doi: 10.1089/ten.TEC.2011.0060
            89.  Kotturi H, Abuabed A, Zafar H, et al. Evaluation of   100.  Jiao X, Sun X, Li W, et al. 3D-printed beta-tricalcium phosphate
               polyethylene glycol diacrylate-polycaprolactone scaffolds for   scaffolds promote osteogenic differentiation of bone marrow-
               tissue engineering applications. J Funct Biomater. 2017;8(3).  deprived mesenchymal stem cells in an N6-methyladenosine-
               doi: 10.3390/jfb8030039
                                                                  dependent manner. Int J Bioprint. 2022;8(2):544.
            90.  Khalaf AT, Wei Y, Wan J, et al. Bone tissue engineering      doi: 10.18063/ijb.v8i2.544
               through 3D bioprinting of bioceramic scaffolds: a review   101. Cunniffe GM, Gonzalez-Fernandez T, Daly A, et al. (*) Three-
               and update. Life (Basel). 2022;12(6).              dimensional bioprinting of polycaprolactone reinforced
               doi: 10.3390/life12060903
                                                                  gene activated bioinks for bone tissue engineering.  Tissue
            91.  Liu W, Jing X, Xu Z, Teng C. PEGDA/HA mineralized   Eng Part A. 2017;23(17-18):891-900.
               hydrogel loaded with Exendin4 promotes bone regeneration      doi: 10.1089/ten.tea.2016.0498
               in rat models with bone defects by inducing osteogenesis.
               J Biomater Appl. 2021;35(10):1337-1346.         102. Cidonio G, Glinka M, Kim YH, et al. Nanoclay-based
               doi: 10.1177/088532822098704                       3D printed scaffolds promote vascular ingrowth ex vivo
                                                                  and  generate  bone  mineral  tissue  in  vitro  and  in  vivo.
            92.  Yang F, Williams CG, Wang DA, Lee H, Manson PN,   Biofabrication. 2020;12(3):035010.
               Elisseeff J. The effect of incorporating RGD adhesive peptide      doi: 10.1088/1758-5090/ab8753



            Volume 10 Issue 3 (2024)                       170                                doi: 10.36922/ijb.2056
   173   174   175   176   177   178   179   180   181   182   183