Page 178 - IJB-10-3
P. 178
International Journal of Bioprinting 3D bone: Current & future
80. Alawi SA, Matschke J, Muallah D, Gelinksy M, Dragu A. 3D in polyethylene glycol diacrylate hydrogel on osteogenesis
bioprinting in plastic and reconstructive surgery: current of bone marrow stromal cells. Biomaterials. 2005;26(30):
concepts, progress, and clinical application. Eur J Plast Surg. 5991-5998.
2023;46:833-843. doi: 10.1016/j.biomaterials.2005.03.018
doi: 10.1007/s00238-023-02108-7
93. Sousa AC, Biscaia S, Alvites R, et al. Assessment of
81. Yazdanpanah Z, Johnston JD, Cooper DML, Chen XB. 3D 3D-printed polycaprolactone, hydroxyapatite nanoparticles
bioprinted scaffolds for bone tissue engineering: state-of- and diacrylate poly(ethylene glycol) scaffolds for bone
the-art and emerging technologies. Front Bioeng Biotech. regeneration. Pharmaceutics. 2022;14(12):2643.
2022;10:824156. doi: 10.3390/pharmaceutics14122643
doi: 10.3389/fbioe.2022.824156
94. Stillman ZS, Jarai BM, Raman N, Patel P, Fromen CA.
82. Lim W, Kim B, Moon YL. Three-dimensional bioprinting for Degradation profiles of poly(ethylene glycol) diacrylate
bone and cartilage transplantation. Ann Joint. 2019;4(1). (PEGDA)-based hydrogel nanoparticles. Polym Chem.
doi: 10.21037/aoj.2018.12.06 2020;11(2):568-580.
doi: 10.1039/c9py01206k
83. Genova T, Roato I, Carossa M, Motta C, Cavagnetto D,
Mussano F. Advances on bone substitutes through 3D 95. Thrivikraman G, Athirasala A, Twohig C, Boda SK,
bioprinting. Int J Mol Sci. 2020;21(19). Bertassoni LE. Biomaterials for craniofacial bone
doi: 10.3390/ijms21197012 regeneration. Dent Clin North Am. 2017;61(4):835-856.
doi: 10.1016/j.cden.2017.06.003
84. Abu Owida H. Developments and clinical applications
of biomimetic tissue regeneration using 3D bioprinting 96. Ahmed AG, Awartani FA Niazy AA, Jansen JA, Alghamdi HS.
technique. Appl Bionics Biomech. 2022;2022: 2260216. A combination of biphasic calcium phosphate (Maxresorb®)
doi: 10.1155/2022/2260216 and hyaluronic acid gel (Hyadent®) for repairing osseous
defects in a rat model. Appl Sci. 2020;10(5):1651.
85. Su X, Wang T, Guo S. Applications of 3D printed bone doi: 10.3390/app10051651
tissue engineering scaffolds in the stem cell field. Regen Ther.
2021;16:63-72. 97. Genova T, Roato I, Carossa M, Motta C, Cavagnetto D,
doi: 10.1016/j.reth.2021.01.007 Mussano F. Advances on bone substitutes through 3D
bioprinting. Int J Mol Sci. 2020;21(19):7012.
86. Hao Y, Cao B, Deng L, et al. The first 3D-bioprinted doi: 10.3390/ijms21197012
personalized active bone to repair bone defects: a case
report. Int J Bioprint. 2023;9(2):654. 98. Beheshtizadeh N, Azami M, Abbasi H, Farzin A. Applying
doi: 10.18063/ijb.v9i2.654 extrusion-based 3D printing technique accelerates fabricating
complex biphasic calcium phosphate-based scaffolds for bone
87. Liu C, Wang L, Lu W, et al. Computer vision-aided tissue regeneration. J Adv Res. 2022;40:69-94.
bioprinting for bone research. Bone Res. 2022;10(1):21. doi: 10.1016/j.jare.2021.12.012
doi: 10.1038/s41413-022-00192-2
99. Fedorovich NE, Schuurman W, Wijnberg HM, et al.
88. Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional Biofabrication of osteochondral tissue equivalents by
bioprinting: current developments and applications in bone printing topologically defined, cell-laden hydrogel scaffolds.
tissue engineering. Acta Biomater. 2020;101:26-42. Tissue Eng Part C Methods. 2012;18(1):33-44.
doi: 10.1016/j.actbio.2019.10.038
doi: 10.1089/ten.TEC.2011.0060
89. Kotturi H, Abuabed A, Zafar H, et al. Evaluation of 100. Jiao X, Sun X, Li W, et al. 3D-printed beta-tricalcium phosphate
polyethylene glycol diacrylate-polycaprolactone scaffolds for scaffolds promote osteogenic differentiation of bone marrow-
tissue engineering applications. J Funct Biomater. 2017;8(3). deprived mesenchymal stem cells in an N6-methyladenosine-
doi: 10.3390/jfb8030039
dependent manner. Int J Bioprint. 2022;8(2):544.
90. Khalaf AT, Wei Y, Wan J, et al. Bone tissue engineering doi: 10.18063/ijb.v8i2.544
through 3D bioprinting of bioceramic scaffolds: a review 101. Cunniffe GM, Gonzalez-Fernandez T, Daly A, et al. (*) Three-
and update. Life (Basel). 2022;12(6). dimensional bioprinting of polycaprolactone reinforced
doi: 10.3390/life12060903
gene activated bioinks for bone tissue engineering. Tissue
91. Liu W, Jing X, Xu Z, Teng C. PEGDA/HA mineralized Eng Part A. 2017;23(17-18):891-900.
hydrogel loaded with Exendin4 promotes bone regeneration doi: 10.1089/ten.tea.2016.0498
in rat models with bone defects by inducing osteogenesis.
J Biomater Appl. 2021;35(10):1337-1346. 102. Cidonio G, Glinka M, Kim YH, et al. Nanoclay-based
doi: 10.1177/088532822098704 3D printed scaffolds promote vascular ingrowth ex vivo
and generate bone mineral tissue in vitro and in vivo.
92. Yang F, Williams CG, Wang DA, Lee H, Manson PN, Biofabrication. 2020;12(3):035010.
Elisseeff J. The effect of incorporating RGD adhesive peptide doi: 10.1088/1758-5090/ab8753
Volume 10 Issue 3 (2024) 170 doi: 10.36922/ijb.2056

