Page 176 - IJB-10-3
P. 176
International Journal of Bioprinting 3D bone: Current & future
31. Haleem A, Javaid M, Khan RH, Suman R. 3D printing 44. Gudapati H, Dey M, Ozbolat I. A comprehensive review
applications in bone tissue engineering. J Clin Orthop on droplet-based bioprinting: past, present and future.
Trauma. 2020;11(Suppl 1):S118-S124. Biomaterials. 2016;102:20-42.
doi: 10.1016/j.jcot.2019.12.002 doi: 10.1016/j.biomaterials.2016.06.012
32. Yi S, Ding F, Gong L, Gu X. Extracellular matrix scaffolds 45. Ventura RD. An overview of laser-assisted bioprinting
for tissue engineering and regenerative medicine. Curr Stem (LAB) in tissue engineering applications. Med Lasers.
Cell Res Ther. 2017;12(3):233-246. 2021;10(2):76-81.
doi: 10.2174/1574888X11666160905092513 doi: 10.25289/ML.2021.10.2.76
33. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing 46. Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise
of functional biomaterials for tissue engineering. Curr Opin review: bioprinting of stem cells for transplantable tissue
Biotechnol. 2016;40:103-112. fabrication. Stem Cells Transl Med. 2017;6(10):1940-1948.
doi: 10.1016/j.copbio.2016.03.014 doi: 10.1002/sctm.17-0148
34. Szűcs D, Fekete Z, Guba, et al. Toward better drug 47. Lee JM, Sing SL, Zhou M, Yeong WY. 3D bioprinting
development: three-dimensional bioprinting in toxicological processes: a perspective on classification and terminology.
research. Int J Bioprint. 2023;9(2):663. Int J Bioprint. 2018;4(2):151.
doi: 10.18063/ijb.v9i2.663 doi: 10.18063/IJB.v4i2.151
35. Xu J, Zheng S, Hu X, et al. Advances in the research of bioinks 48. Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based
based on natural collagen, polysaccharide and their derivatives bioprinting-process, materials, applications and regulatory
for skin 3D bioprinting. Polymers (Basel). 2020;12(6). challenges. Biofabrication. 2020;12(2):022001.
doi: 10.3390/polym12061237 doi: 10.1088/1758-5090/ab6034
36. Lee VK, Dai G. Three-dimensional bioprinting and tissue 49. Faraji Rad Z, Prewett PD, Davies GJ. High-resolution two-
fabrication: prospects for drug discovery and regenerative photon polymerization: the most versatile technique for
medicine. Adv Healthcare Technol. 2015;1:23-35. the fabrication of microneedle arrays. Microsyst Nanoeng.
doi: 10.2147/AHCT.S69191 2021;7:71.
doi: 10.1038/s41378-021-00298-3
37. Sundaramurthi D, Rauf S, Hauser CAE. 3D bioprinting
technology for regenerative medicine applications. Int J 50. Liu F, Chen Q, Liu C, et al. Natural polymers for organ 3D
Bioprint. 2016;2(2):9-26. bioprinting. Polymers (Basel). 2018;10(11):1278.
doi: 10.18063/IJB.2016.02.010 doi: 10.3390/polym10111278
38. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh 51. Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue
JYH. 3D bioprinting of tissues and organs for regenerative engineering scaffolds. Bioact Mater. 2020;5(1):82-91.
medicine. Adv Drug Deliv Rev. 2018;132:296-332. doi: 10.1016/j.bioactmat.2020.01.004
doi: 10.1016/j.addr.2018.07.004 52. Eshraghi S, Das S. Mechanical and microstructural properties
39. Zhou D, Chen J, Liu B, Zhang X, Li X, Xu T. Bioinks for jet- of polycaprolactone scaffolds with one-dimensional, two-
based bioprinting. Bioprinting. 2019;16:e00060. dimensional, and three-dimensional orthogonally oriented
doi: 10.1016/j.bprint.2019.e00060 porous architectures produced by selective laser sintering.
Acta Biomater. 2010;6(7):2467-2476.
40. He Y, Gu Z, Xie M, Fu J, Lin H. Why choose 3D bioprinting? doi: 10.1016/j.actbio.2010.02.002
Part II: methods and bioprinters. Bio-Des Manuf. 2020;3:1-4.
doi: 10.1007/s42242-020-00064-w 53. Lu L, Zhang Q, Wootton DM, et al. Mechanical study of
polycaprolactone-hydroxyapatite porous scaffolds created
41. Fontes A, Marcomini RF. 3D bioprinting: a review of by porogen-based solid freeform fabrication method. J Appl
materials, processes and bioink properties. J Eng Exact Sci. Biomater Funct Mater. 2014;12(3):145-154.
2020;6(5):0617-0639. doi: 10.5301/JABFM.5000163
doi: 10.18540/jcecvl6iss5pp0617-0639
54. Koch F, Thaden O, Conrad S, et al. Mechanical properties of
42. Chowdhury SR, Lokanathan Y, Xian LJ, et al. 3D printed polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting
bioscaffolds for developing tissue-engineered constructs. with alginate-gelatin hydrogel. J Mech Behav Biomed Mater.
In: Yasa E, Mhadhbi M, Santecchia E, eds. Design and 2022;130:105219.
Manufacturing. 2020. doi: 10.1016/j.jmbbm.2022.105219
doi: 10.5772/intechopen.92418
55. Jakus AE, Rutz AL, Jordan SW, et al. Hyperelastic “bone”:
43. Gao D, Zhou JG. Designs and applications of a highly versatile, growth factor-free, osteoregenerative,
electrohydrodynamic 3D printing. Int J Bioprint. 2019;5(1):172. scalable, and surgically friendly biomaterial. Sci Transl Med.
doi: 10.18063/ijb.v5i1.172 2016;8(358):358ra127.
Volume 10 Issue 3 (2024) 168 doi: 10.36922/ijb.2056

