Page 176 - IJB-10-3
P. 176

International Journal of Bioprinting                                           3D bone: Current & future




            31.  Haleem A, Javaid M, Khan RH, Suman R. 3D printing   44.  Gudapati H, Dey M, Ozbolat I. A comprehensive review
               applications in bone tissue engineering.  J Clin Orthop   on droplet-based bioprinting: past, present and future.
               Trauma. 2020;11(Suppl 1):S118-S124.                Biomaterials. 2016;102:20-42.
               doi: 10.1016/j.jcot.2019.12.002                    doi: 10.1016/j.biomaterials.2016.06.012
            32.  Yi S, Ding F, Gong L, Gu X. Extracellular matrix scaffolds   45.  Ventura RD. An overview of laser-assisted bioprinting
               for tissue engineering and regenerative medicine. Curr Stem   (LAB)  in tissue  engineering  applications.  Med Lasers.
               Cell Res Ther. 2017;12(3):233-246.                 2021;10(2):76-81.
               doi: 10.2174/1574888X11666160905092513             doi: 10.25289/ML.2021.10.2.76
            33.  Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing   46.  Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise
               of functional biomaterials for tissue engineering. Curr Opin   review: bioprinting of  stem cells for  transplantable tissue
               Biotechnol. 2016;40:103-112.                       fabrication. Stem Cells Transl Med. 2017;6(10):1940-1948.
               doi: 10.1016/j.copbio.2016.03.014                  doi: 10.1002/sctm.17-0148
            34.  Szűcs D, Fekete Z, Guba, et al. Toward better drug   47.  Lee JM, Sing SL, Zhou M, Yeong WY. 3D bioprinting
               development: three-dimensional bioprinting in toxicological   processes: a perspective on classification and terminology.
               research. Int J Bioprint. 2023;9(2):663.           Int J Bioprint. 2018;4(2):151.
               doi: 10.18063/ijb.v9i2.663                         doi: 10.18063/IJB.v4i2.151
            35.  Xu J, Zheng S, Hu X, et al. Advances in the research of bioinks   48.  Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based
               based on natural collagen, polysaccharide and their derivatives   bioprinting-process, materials, applications and regulatory
               for skin 3D bioprinting. Polymers (Basel). 2020;12(6).  challenges. Biofabrication. 2020;12(2):022001.
               doi: 10.3390/polym12061237                         doi: 10.1088/1758-5090/ab6034
            36.  Lee VK, Dai G. Three-dimensional bioprinting and tissue   49.  Faraji Rad Z, Prewett PD, Davies GJ. High-resolution two-
               fabrication: prospects for drug discovery and regenerative   photon polymerization: the most versatile technique for
               medicine. Adv Healthcare Technol. 2015;1:23-35.    the fabrication of microneedle arrays.  Microsyst Nanoeng.
               doi: 10.2147/AHCT.S69191                           2021;7:71.
                                                                  doi: 10.1038/s41378-021-00298-3
            37.  Sundaramurthi D, Rauf S, Hauser CAE. 3D bioprinting
               technology for regenerative medicine applications.  Int J   50.  Liu F, Chen Q, Liu C, et al. Natural polymers for organ 3D
               Bioprint. 2016;2(2):9-26.                          bioprinting. Polymers (Basel). 2018;10(11):1278.
               doi: 10.18063/IJB.2016.02.010                      doi: 10.3390/polym10111278
            38.  Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh   51.  Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue
               JYH. 3D bioprinting of tissues and organs for regenerative   engineering scaffolds. Bioact Mater. 2020;5(1):82-91.
               medicine. Adv Drug Deliv Rev. 2018;132:296-332.     doi: 10.1016/j.bioactmat.2020.01.004
               doi: 10.1016/j.addr.2018.07.004                 52.  Eshraghi S, Das S. Mechanical and microstructural properties
            39.  Zhou D, Chen J, Liu B, Zhang X, Li X, Xu T. Bioinks for jet-  of polycaprolactone scaffolds with one-dimensional, two-
               based bioprinting. Bioprinting. 2019;16:e00060.    dimensional, and three-dimensional orthogonally oriented
               doi: 10.1016/j.bprint.2019.e00060                  porous architectures produced by selective laser sintering.
                                                                  Acta Biomater. 2010;6(7):2467-2476.
            40.  He Y, Gu Z, Xie M, Fu J, Lin H. Why choose 3D bioprinting?      doi: 10.1016/j.actbio.2010.02.002
               Part II: methods and bioprinters. Bio-Des Manuf. 2020;3:1-4.
               doi: 10.1007/s42242-020-00064-w                 53.  Lu L, Zhang Q, Wootton DM, et al. Mechanical study of
                                                                  polycaprolactone-hydroxyapatite porous scaffolds created
            41.  Fontes A, Marcomini RF. 3D bioprinting: a review of   by porogen-based solid freeform fabrication method. J Appl
               materials, processes and bioink properties. J Eng Exact Sci.   Biomater Funct Mater. 2014;12(3):145-154.
               2020;6(5):0617-0639.                               doi: 10.5301/JABFM.5000163
               doi: 10.18540/jcecvl6iss5pp0617-0639
                                                               54.  Koch F, Thaden O, Conrad S, et al. Mechanical properties of
            42.  Chowdhury SR, Lokanathan Y, Xian LJ, et al. 3D printed   polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting
               bioscaffolds for developing tissue-engineered constructs.   with alginate-gelatin hydrogel. J Mech Behav Biomed Mater.
               In: Yasa E, Mhadhbi M, Santecchia E, eds.  Design and   2022;130:105219.
               Manufacturing. 2020.                               doi: 10.1016/j.jmbbm.2022.105219
               doi: 10.5772/intechopen.92418
                                                               55.  Jakus AE, Rutz AL, Jordan SW, et al. Hyperelastic “bone”:
            43.  Gao D, Zhou JG. Designs and applications of      a highly versatile, growth factor-free, osteoregenerative,
               electrohydrodynamic 3D printing. Int J Bioprint. 2019;5(1):172.  scalable, and surgically friendly biomaterial. Sci Transl Med.
               doi: 10.18063/ijb.v5i1.172                         2016;8(358):358ra127.




            Volume 10 Issue 3 (2024)                       168                                doi: 10.36922/ijb.2056
   171   172   173   174   175   176   177   178   179   180   181