Page 177 - IJB-10-3
P. 177
International Journal of Bioprinting 3D bone: Current & future
doi: 10.1126/scitranslmed.aaf7704 for different skeletal muscle tissue replacements. Materials
(Basel). 2020;13(11):2483.
56. Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview
of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials doi: 10.3390/ma13112483
for bone tissue engineering. Int J Mol Sci. 2014;15(3): 68. Kim YS, Majid M, Melchiorri AJ, Mikos AG. Applications
3640-3659. of decellularized extracellular matrix in bone and cartilage
doi: 10.3390/ijms15033640 tissue engineering. Bioeng Transl Med. 2019;4(1):83-95.
57. Petros S, Tesfaye T, Ayele M. A review on gelatin doi: 10.1002/btm2.10110
based hydrogels for medical textile applications. J Eng. 69. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue
2020;2020:8866582. analogues with decellularized extracellular matrix bioink.
doi: 10.1155/2020/8866582 Nat Commun. 2014;5:3935.
58. Sanchez-Fernandez JA, Presbitero-Espinosa G, Pena- doi: 10.1038/ncomms4935
Paras L, et al. Characterization of sodium alginate 70. Hickey RJ, Pelling AE. Cellulose biomaterials for tissue
hydrogels reinforced with nanoparticles of hydroxyapatite engineering. Front Bioeng Biotechnol. 2019;7:45.
for biomedical applications. Polymers (Basel). 2021; doi: 10.3389/fbioe.2019.00045
13(17).
doi: 10.3390/polym13172927 71. Choi JR, Yong KW, Choi JY, Cowie AC. Recent advances in
photo-crosslinkable hydrogels for biomedical applications.
59. Tan JJY, Lee CP, Hashimoto M. Preheating of gelatin Biotechniques. 2019;66(1):40-53.
improves its printability with transglutaminase in direct ink doi: 10.2144/btn-2018-0083
writing 3D printing. Int J Bioprint. 2020;6(4):296.
doi: 10.18063/ijb.v6i4.296 72. Kumar A, Kargozar, Baino F, Han SS. Additive
manufacturing methods for producing hydroxyapatite and
60. Mancha Sanchez E, Gomez-Blanco JC, Lopez Nieto E, et al. hydroxyapatite-based composite scaffolds: a review. Front
Hydrogels for bioprinting: a systematic review of hydrogels Mater. 2019;6:313.
synthesis, bioprinting parameters, and bioprinted structures doi: 10.3389/fmats.2019.00313
behavior. Front Bioeng Biotechnol. 2020;8:776.
doi: 10.3389/fbioe.2020.00776 73. Habibah TU, Amlani DV, Brizuela M. Hydroxyapatite Dental
Material. Treasure Island (FL): StatPearls; 2022.
61. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A,
Annabi N, Khademhosseini A. Synthesis, properties, and 74. Zhang M, Lin R, Wang X, et al. 3D printing of Haversian
biomedical applications of gelatin methacryloyl (GelMA) bone-mimicking scaffolds for multicellular delivery in bone
hydrogels. Biomaterials. 2015;73:254-271. regeneration. Sci Adv. 2020;6(12):eaaz6725.
doi: 10.1016/j.biomaterials.2015.08.045 doi: 10.1126/sciadv.aaz6725
62. Piao Y, You H, Xu T, et al. Biomedical applications of gelatin 75. Brazete D, Torres PMC, Abrantes JCC, Ferreira JMF.
methacryloyl hydrogels. Eng Regener. 2021;2:47-56. Influence of the Ca/P ratio and cooling rate on the allotropic
doi: 10.1016/j.engreg.2021.03.002 α↔β-tricalcium phosphate phase transformations. Ceram
63. Lazaridou M, Bikiaris DN, Lamprou DA. 3D bioprinted Int. 2018;44(7):8249-8256.
chitosan-based hydrogel scaffolds in tissue engineering and doi: 10.1016/j.ceramint.2018.02.005
localised drug delivery. Pharmaceutics. 2022;14(9):1978. 76. Kim WJ, Yun HS, Kim GH. An innovative cell-laden alpha-
doi: 10.3390/pharmaceutics14091978 TCP/collagen scaffold fabricated using a two-step printing
64. Khunmanee S, Jeong Y, Park H. Crosslinking method of process for potential application in regenerating hard
hyaluronic-based hydrogel for biomedical applications. tissues. Sci Rep. 2017;7(1):3181.
J Tissue Eng. 2017;8:2041731417726464. doi: 10.1038/s41598-017-03455-9
doi: 10.1177/2041731417726464 77. Bouler JM, Pilet P, Gauthier O, Verron E. Biphasic calcium
65. Zheng H, Zuo B. Functional silk fibroin hydrogels: phosphate ceramics for bone reconstruction: a review of
preparation, properties and applications. J Mater Chem B. biological response. Acta Biomater. 2017;53:1-12.
2021;9(5):1238-1258. doi: 10.1016/j.actbio.2017.01.076
doi: 10.1039/d0tb02099k 78. Dukle A, Murugan D, Nathanael AJ, Rangasamy L, Oh TH.
66. Amirazad H, Dadashpour M, Zarghami N. Application of Can 3D-printed bioactive glasses be the future of bone tissue
decellularized bone matrix as a bioscaffold in bone tissue engineering? Polymers (Basel). 2022;14(8).
engineering. J Biol Eng. 2022;16(1):1. doi: 10.3390/polym14081627
doi: 10.1186/s13036-021-00282-5 79. Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting
67. Boso D, Maghin E, Carraro E, Giagante M, Pavan P, Piccoli using reactive fillers: a review. Acta Biomater. 2020;113:1-22.
M. Extracellular matrix-derived hydrogels as biomaterial doi: 10.1016/j.actbio.2020.06.040
Volume 10 Issue 3 (2024) 169 doi: 10.36922/ijb.2056

