Page 177 - IJB-10-3
P. 177

International Journal of Bioprinting                                           3D bone: Current & future




               doi: 10.1126/scitranslmed.aaf7704                  for different skeletal muscle tissue replacements. Materials
                                                                  (Basel). 2020;13(11):2483.
            56.  Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview
               of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials      doi: 10.3390/ma13112483
               for bone tissue engineering.  Int J Mol Sci. 2014;15(3):   68.  Kim YS, Majid M, Melchiorri AJ, Mikos AG. Applications
               3640-3659.                                         of decellularized extracellular matrix in bone and cartilage
               doi: 10.3390/ijms15033640                          tissue engineering. Bioeng Transl Med. 2019;4(1):83-95.
            57.  Petros  S,  Tesfaye  T,  Ayele  M.  A  review  on  gelatin      doi: 10.1002/btm2.10110
               based hydrogels for medical textile applications.  J Eng.   69.  Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue
               2020;2020:8866582.                                 analogues with decellularized extracellular matrix bioink.
               doi: 10.1155/2020/8866582                          Nat Commun. 2014;5:3935.
            58.  Sanchez-Fernandez JA, Presbitero-Espinosa G, Pena-     doi: 10.1038/ncomms4935
               Paras L, et al. Characterization of sodium alginate   70.  Hickey RJ, Pelling AE. Cellulose biomaterials for tissue
               hydrogels reinforced with nanoparticles of hydroxyapatite   engineering. Front Bioeng Biotechnol. 2019;7:45.
               for biomedical applications.  Polymers (Basel). 2021;      doi: 10.3389/fbioe.2019.00045
               13(17).
               doi: 10.3390/polym13172927                      71.  Choi JR, Yong KW, Choi JY, Cowie AC. Recent advances in
                                                                  photo-crosslinkable hydrogels for biomedical applications.
            59.  Tan JJY, Lee CP, Hashimoto M. Preheating of gelatin   Biotechniques. 2019;66(1):40-53.
               improves its printability with transglutaminase in direct ink      doi: 10.2144/btn-2018-0083
               writing 3D printing. Int J Bioprint. 2020;6(4):296.
               doi: 10.18063/ijb.v6i4.296                      72.  Kumar A,  Kargozar,  Baino F, Han SS. Additive
                                                                  manufacturing methods for producing hydroxyapatite and
            60.  Mancha Sanchez E, Gomez-Blanco JC, Lopez Nieto E, et al.   hydroxyapatite-based composite scaffolds: a review. Front
               Hydrogels for bioprinting: a systematic review of hydrogels   Mater. 2019;6:313.
               synthesis, bioprinting parameters, and bioprinted structures      doi: 10.3389/fmats.2019.00313
               behavior. Front Bioeng Biotechnol. 2020;8:776.
               doi: 10.3389/fbioe.2020.00776                   73.  Habibah TU, Amlani DV, Brizuela M. Hydroxyapatite Dental
                                                                  Material. Treasure Island (FL): StatPearls; 2022.
            61.  Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A,
               Annabi N, Khademhosseini A. Synthesis, properties, and   74.  Zhang M, Lin R, Wang X, et al. 3D printing of Haversian
               biomedical applications of gelatin methacryloyl (GelMA)   bone-mimicking scaffolds for multicellular delivery in bone
               hydrogels. Biomaterials. 2015;73:254-271.          regeneration. Sci Adv. 2020;6(12):eaaz6725.
               doi: 10.1016/j.biomaterials.2015.08.045            doi: 10.1126/sciadv.aaz6725
            62.  Piao Y, You H, Xu T, et al. Biomedical applications of gelatin   75.  Brazete  D,  Torres  PMC,  Abrantes  JCC,  Ferreira  JMF.
               methacryloyl hydrogels. Eng Regener. 2021;2:47-56.  Influence of the Ca/P ratio and cooling rate on the allotropic
               doi: 10.1016/j.engreg.2021.03.002                  α↔β-tricalcium phosphate phase transformations.  Ceram
            63.  Lazaridou M, Bikiaris DN, Lamprou DA. 3D bioprinted   Int. 2018;44(7):8249-8256.
               chitosan-based hydrogel scaffolds in tissue engineering and      doi: 10.1016/j.ceramint.2018.02.005
               localised drug delivery. Pharmaceutics. 2022;14(9):1978.  76.  Kim WJ, Yun HS, Kim GH. An innovative cell-laden alpha-
               doi: 10.3390/pharmaceutics14091978                 TCP/collagen scaffold fabricated using a two-step printing
            64.  Khunmanee S, Jeong Y, Park H. Crosslinking method of   process for  potential  application in  regenerating  hard
               hyaluronic-based  hydrogel for  biomedical  applications.    tissues. Sci Rep. 2017;7(1):3181.
               J Tissue Eng. 2017;8:2041731417726464.             doi: 10.1038/s41598-017-03455-9
               doi: 10.1177/2041731417726464                   77.  Bouler JM, Pilet P, Gauthier O, Verron E. Biphasic calcium
            65.  Zheng H,  Zuo B. Functional silk fibroin hydrogels:   phosphate ceramics for bone reconstruction: a review of
               preparation, properties and applications. J Mater Chem B.   biological response. Acta Biomater. 2017;53:1-12.
               2021;9(5):1238-1258.                               doi: 10.1016/j.actbio.2017.01.076
               doi: 10.1039/d0tb02099k                         78.  Dukle A, Murugan D, Nathanael AJ, Rangasamy L, Oh TH.
            66.  Amirazad H, Dadashpour M, Zarghami N. Application of   Can 3D-printed bioactive glasses be the future of bone tissue
               decellularized bone matrix as a bioscaffold in bone tissue   engineering? Polymers (Basel). 2022;14(8).
               engineering. J Biol Eng. 2022;16(1):1.             doi: 10.3390/polym14081627
               doi: 10.1186/s13036-021-00282-5                 79.  Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting
            67.  Boso D, Maghin E, Carraro E, Giagante M, Pavan P, Piccoli   using reactive fillers: a review. Acta Biomater. 2020;113:1-22.
               M. Extracellular matrix-derived hydrogels as biomaterial      doi: 10.1016/j.actbio.2020.06.040



            Volume 10 Issue 3 (2024)                       169                                doi: 10.36922/ijb.2056
   172   173   174   175   176   177   178   179   180   181   182