Page 217 - IJB-10-3
P. 217
International Journal of Bioprinting Sr on GO enhances PLLA/PGA scaffold
References mechanical properties and antibacterial behavior. Biomed
Mater. 2022;17:035011.
1. Sun H, Ling L, Ren Z, Memon SA, Xing F. Effect of graphene doi: 10.1088/1748-605X/ac62e8
oxide/graphene hybrid on mechanical properties of cement 12. Abzan N, Kharaziha M, Labbaf S. Development of three-
mortar and mechanism investigation. Nanomaterials dimensional piezoelectric polyvinylidene fluoride-graphene
(Basel). 2020;10(1):113. oxide scaffold by non-solvent induced phase separation
doi: 10.3390/nano10010113 method for nerve tissue engineering. Mater Design.
2. Chathuranga H, Wasalathilake KC, Marriam I, et al. 2019;167:107636.
Preparation of bioinspired graphene oxide/PMMA doi: 10.1016/j.matdes.2019.107636
nanocomposite with improved mechanical properties. 13. Wang W, Wei J, Lei D, et al. 3D printing of lithium
Compos Sci Technol. 2021;216:109046. osteogenic bioactive composite scaffold for enhanced bone
doi: 10.1016/j.compscitech.2021.109046 regeneration. Compos Part B Eng. 2023;256:110641.
3. Qu H, Huang L, Han Z, et al. A review of graphene-oxide/metal– doi: 10.1016/j.compositesb.2023.110641
organic framework composites materials: characteristics, 14. Zhang X, He J, Qiao L, et al. 3D printed PCLA scaffold
preparation and applications. J Porous Mat. 2021; with nano‐hydroxyapatite coating doped green tea EGCG
28:1837-1865. promotes bone growth and inhibits multidrug‐resistant
doi: 10.1007/s10934-021-01125-w bacteria colonization. Cell Prolif. 2022;55(10):e13289.
4. Yan L, Wang L, Wu J, et al. Multi-biofunctional graphene doi: 10.1111/cpr.13289
oxide-enhanced poly-L-lactic acid composite nanofiber 15. Chen A, Wang W, Mao Z, et al. Multi‐material 3D and
scaffolds for ovarian function recovery of transplanted- 4D bioprinting of heterogeneous constructs for tissue
tissue. NPJ Regen Med. 2022;7(1):52. engineering. Adv Mater. 2023:2307686.
doi: 10.1038/s41536-022-00236-5 doi: 10.1002/adma.202307686
5. Ju J, Peng X, Huang K, et al. High-performance porous 16. Askari E, Rasouli M, Darghiasi SF, Naghib SM, Zare Y,
PLLA-based scaffolds for bone tissue engineering: Rhee KY. Reduced graphene oxide-grafted bovine serum
preparation, characterization, and in vitro and in vivo albumin/bredigite nanocomposites with high mechanical
evaluation. Polymer. 2019;180:121707. properties and excellent osteogenic bioactivity for bone
doi: 10.1016/j.polymer.2019.121707 tissue engineering. Bio-Des Manuf. 2021;4:243-257.
6. Murakami T, Otsuki S, Nakagawa K, et al. Establishment of doi: 10.1007/s42242-020-00113-4
novel meniscal scaffold structures using polyglycolic and 17. Soraya Z, Ghollasi M, Halabian R, Eftekhari E, Tabasi A,
poly-l-lactic acids. J Biomater Appl. 2017;32:150-161. Salimi A. Donepezil hydrochloride as a novel inducer for
doi: 10.1177/0885328217713631 osteogenic differentiation of mesenchymal stem cells on
7. Cantón I, Mckean R, Charnley M, et al. Development of an PLLA scaffolds in vitro. Biotechnol J. 2021;16:2100112.
Ibuprofen‐releasing biodegradable PLA/PGA electrospun doi: 10.1002/biot.202100112
scaffold for tissue regeneration. Biotechnol Bioeng. 18. Toosi S, Naderi-Meshkin H, Kalalinia F, et al. Bone defect
2010;105:396-408. healing is induced by collagen sponge/polyglycolic acid. J
doi: 10.1002/bit.22530 Mater Sci Mater Med. 2019;30:1-10.
8. Hua W, Shi W, Mitchell K, et al. 3D printing of biodegradable doi: 10.1007/s10856-019-6235-9
polymer vascular stents: a review. Chin J Mech Eng Addit 19. Bai H, Zhao Y, Wang C, et al. Enhanced osseointegration
Manuf Front. 2022;1(2):100020. of three-dimensional supramolecular bioactive interface
doi: 10.1016/j.cjmeam.2022.100020 through osteoporotic microenvironment regulation.
9. Shuai C, Shi X, Yang F, Tian H, Feng P. Oxygen vacancy Theranostics. 2020;10:4779.
boosting Fenton reaction in bone scaffold towards doi: 10.7150/thno.43736
fighting bacterial infection. Int J Extreme Manuf. 2023;6: 20. Wang J, Wang H, Wang Y, et al. Endothelialized
015101. microvessels fabricated by microfluidics facilitate osteogenic
doi: 10.1088/2631-7990/ad01fd
differentiation and promote bone repair. Acta Biomater.
10. Storck JL, Ehrmann G, Uthoff J, Diestelhorst E, Blachowicz 2022;142:85-98.
T, Ehrmann A. Investigating inexpensive polymeric 3D doi: 10.1016/j.actbio.2022.01.055
printed materials under extreme thermal conditions. Mater 21. Jarrar H, Altındal DÇ, Gümüşderelioğlu M. Scaffold-
Futures. 2022;1:015001. based osteogenic dual delivery system with melatonin and
doi: 10.1088/2752-5724/ac4beb
BMP-2 releasing PLGA microparticles. Int J Pharmaceut.
11. Najafinezhad A, Bakhsheshi-Rad HR, Saberi A, et al. 2021;600:120489.
Graphene oxide encapsulated forsterite scaffolds to improve doi: 10.1016/j.ijpharm.2021.120489
Volume 10 Issue 3 (2024) 209 doi: 10.36922/ijb.1829

