Page 217 - IJB-10-3
P. 217

International Journal of Bioprinting                                 Sr on GO enhances PLLA/PGA scaffold




            References                                            mechanical properties and antibacterial behavior.  Biomed
                                                                  Mater. 2022;17:035011.
            1.   Sun H, Ling L, Ren Z, Memon SA, Xing F. Effect of graphene      doi: 10.1088/1748-605X/ac62e8
               oxide/graphene hybrid on mechanical properties of cement   12.   Abzan N, Kharaziha M, Labbaf S. Development of three-
               mortar and mechanism investigation. Nanomaterials   dimensional piezoelectric polyvinylidene fluoride-graphene
               (Basel). 2020;10(1):113.                           oxide scaffold by non-solvent induced phase separation
               doi: 10.3390/nano10010113                          method for nerve tissue engineering.  Mater Design.
            2.   Chathuranga H, Wasalathilake KC, Marriam I, et al.   2019;167:107636.
               Preparation of bioinspired graphene oxide/PMMA      doi: 10.1016/j.matdes.2019.107636
               nanocomposite with improved mechanical properties.   13.   Wang W, Wei J, Lei D, et al. 3D printing of lithium
               Compos Sci Technol. 2021;216:109046.               osteogenic bioactive composite scaffold for enhanced bone
               doi: 10.1016/j.compscitech.2021.109046             regeneration. Compos Part B Eng. 2023;256:110641.
            3.   Qu H, Huang L, Han Z, et al. A review of graphene-oxide/metal–     doi: 10.1016/j.compositesb.2023.110641
               organic  framework  composites materials: characteristics,   14.   Zhang X, He J, Qiao L, et al. 3D printed PCLA scaffold
               preparation and applications.  J Porous Mat.  2021;   with nano‐hydroxyapatite coating doped green tea EGCG
               28:1837-1865.                                      promotes bone growth and inhibits multidrug‐resistant
               doi: 10.1007/s10934-021-01125-w                    bacteria colonization. Cell Prolif. 2022;55(10):e13289.
            4.   Yan L, Wang L, Wu J, et al. Multi-biofunctional graphene      doi: 10.1111/cpr.13289
               oxide-enhanced poly-L-lactic acid composite nanofiber   15.   Chen A, Wang W, Mao Z, et al. Multi‐material 3D and
               scaffolds for ovarian function recovery of transplanted-  4D bioprinting of heterogeneous constructs for tissue
               tissue. NPJ Regen Med. 2022;7(1):52.               engineering. Adv Mater. 2023:2307686.
               doi: 10.1038/s41536-022-00236-5                    doi: 10.1002/adma.202307686
            5.   Ju J,  Peng X,  Huang K,  et al. High-performance porous   16.   Askari E, Rasouli M, Darghiasi SF, Naghib SM, Zare Y,
               PLLA-based scaffolds for bone tissue engineering:   Rhee KY. Reduced graphene oxide-grafted bovine serum
               preparation, characterization, and in vitro and in vivo   albumin/bredigite nanocomposites with high mechanical
               evaluation. Polymer. 2019;180:121707.              properties  and excellent  osteogenic  bioactivity  for  bone
               doi: 10.1016/j.polymer.2019.121707                 tissue engineering. Bio-Des Manuf. 2021;4:243-257.
            6.   Murakami T, Otsuki S, Nakagawa K, et al. Establishment of      doi: 10.1007/s42242-020-00113-4
               novel meniscal scaffold structures using polyglycolic and   17.   Soraya  Z,  Ghollasi  M,  Halabian  R,  Eftekhari  E,  Tabasi  A,
               poly-l-lactic acids. J Biomater Appl. 2017;32:150-161.  Salimi A. Donepezil hydrochloride as a novel inducer for
               doi: 10.1177/0885328217713631                      osteogenic differentiation of mesenchymal stem cells on
            7.   Cantón I, Mckean R, Charnley M, et al. Development of an   PLLA scaffolds in vitro. Biotechnol J. 2021;16:2100112.
               Ibuprofen‐releasing biodegradable PLA/PGA electrospun      doi: 10.1002/biot.202100112
               scaffold for tissue regeneration.  Biotechnol Bioeng.   18.   Toosi S, Naderi-Meshkin H, Kalalinia F, et al. Bone defect
               2010;105:396-408.                                  healing is induced by collagen sponge/polyglycolic acid. J
               doi: 10.1002/bit.22530                             Mater Sci Mater Med. 2019;30:1-10.
            8.   Hua W, Shi W, Mitchell K, et al. 3D printing of biodegradable      doi: 10.1007/s10856-019-6235-9
               polymer vascular stents: a review. Chin J Mech Eng Addit   19.   Bai H, Zhao Y, Wang C, et al. Enhanced osseointegration
               Manuf Front. 2022;1(2):100020.                     of three-dimensional supramolecular bioactive interface
               doi: 10.1016/j.cjmeam.2022.100020                  through  osteoporotic  microenvironment  regulation.
            9.   Shuai  C,  Shi  X,  Yang  F,  Tian  H,  Feng  P.  Oxygen  vacancy   Theranostics. 2020;10:4779.
               boosting  Fenton  reaction  in  bone  scaffold  towards      doi: 10.7150/thno.43736
               fighting bacterial infection.  Int J Extreme Manuf. 2023;6:   20.   Wang J, Wang H, Wang Y, et al. Endothelialized
               015101.                                            microvessels fabricated by microfluidics facilitate osteogenic
               doi: 10.1088/2631-7990/ad01fd
                                                                  differentiation  and  promote  bone  repair. Acta Biomater.
            10.   Storck JL, Ehrmann G, Uthoff J, Diestelhorst E, Blachowicz   2022;142:85-98.
               T, Ehrmann A. Investigating inexpensive polymeric 3D      doi: 10.1016/j.actbio.2022.01.055
               printed materials under extreme thermal conditions. Mater   21.   Jarrar H, Altındal DÇ, Gümüşderelioğlu M. Scaffold-
               Futures. 2022;1:015001.                            based osteogenic dual delivery system with melatonin and
               doi: 10.1088/2752-5724/ac4beb
                                                                  BMP-2 releasing PLGA microparticles.  Int J Pharmaceut.
            11.   Najafinezhad A, Bakhsheshi-Rad HR, Saberi A, et al.   2021;600:120489.
               Graphene oxide encapsulated forsterite scaffolds to improve      doi: 10.1016/j.ijpharm.2021.120489



            Volume 10 Issue 3 (2024)                       209                                doi: 10.36922/ijb.1829
   212   213   214   215   216   217   218   219   220   221   222