Page 283 - IJB-10-3
P. 283
International Journal of Bioprinting 3D bioscaffolds with SR1 for vasculogenesis
11. Hertweck J, Ritz U, Götz H, Schottel PC, Rommens PM, 21. Smith KJ, Murray IA, Tanos R, et al. Identification of a high-
Hofmann A. CD34(+) cells seeded in collagen scaffolds affinity ligand that exhibits complete aryl hydrocarbon receptor
promote bone formation in a mouse calvarial defect model. J antagonism. J Pharmacol Exp Ther. 2011;338(1):318-327.
Biomed Mater Res B Appl Biomater. 2018;106(4):1505-1516. doi: 10.1124/jpet.110.178392
doi: 10.1002/jbm.b.33956
22. Cao L, Mooney DJ. Spatiotemporal control over growth
12. Kawamoto A, Iwasaki H, Kusano K, et al. CD34-positive factor signaling for therapeutic neovascularization. Adv
cells exhibit increased potency and safety for therapeutic Drug Deliv Rev. 2007;59(13):1340-1350.
neovascularization after myocardial infarction compared doi: 10.1016/j.addr.2007.08.012
with total mononuclear cells. Circulation. 2018;114(20): 23. Fahimipour F, Rasoulianboroujeni M, Dashtimoghadam
2163-2169. E, et al. 3D printed TCP-based scaffold incorporating
doi: 10.1161/CIRCULATIONAHA.106.644518
VEGF-loaded PLGA microspheres for craniofacial tissue
13. Musialek P, Tekieli L, Kostkiewicz M, et al. Randomized engineering. Dent Mater. 2017;33(11):1205-1216.
transcoronary delivery of CD34(+) cells with perfusion doi: 10.1016/j.dental.2017.06.016
versus stop-flow method in patients with recent myocardial 24. Matassi F, Nistri L, Chicon Paez D, Innocenti M. New
infarction: early cardiac retention of (9)(9)(m)Tc-labeled biomaterials for bone regeneration. Clin Cases Miner Bone
cells activity. J Nucl Cardiol. 2011;18(1):104-116. Metab. 2011;8(1):21-24.
doi: 10.1007/s12350-010-9326-z
25. Jafari M, Paknejad Z, Rad MR, et al. Polymeric scaffolds in
14. Pasquet S, Sovalat H, Hénon P, et al. Long-term benefit of tissue engineering: a literature review. J Biomed Mater Res B
intracardiac delivery of autologous granulocyte-colony-
stimulating factor-mobilized blood CD34+ cells containing Appl Biomater. 2017;105(2):431-459.
cardiac progenitors on regional heart structure and doi: 10.1002/jbm.b.33547
function after myocardial infarct. Cytotherapy. 2009;11(8): 26. Kim SC, Heo SY, Oh GW, Yi M, Jung W-K. A 3D-printed
1002-1015. polycaprolactone/marine collagen scaffold reinforced
doi: 10.3109/14653240903164963 with carbonated hydroxyapatite from fish bones for bone
regeneration. Mar Drugs. 2022;20(6):344.
15. Sivan-Loukianova E, Awad OA, Stepanovic V, Bickenbach
J, Schatteman GC. CD34+ blood cells accelerate doi: 10.3390/md20060344
vascularization and healing of diabetic mouse skin wounds. 27. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean
J Vasc Res. 2003;40(4):368-377. pore size on cell attachment, proliferation and migration
doi: 10.1159/000072701 in collagen-glycosaminoglycan scaffolds for bone tissue
engineering. Biomaterials. 2010;31(3):461-466.
16. O E, Lee BH, Ahn HY, et al. Efficient nanadhesive ex vivo
expansion of early endothelial progenitor cells derived from doi: 10.1016/j.biomaterials.2009.09.063
CD34+ human cord blood fraction for effective therapeutic 28. Momot KI. Hydrated collagen: where physical chemistry,
vascularization. FASEB J. 2011;25(1):159-169. medical imaging, and bioengineering meet. J Phys Chem B.
doi: 10.1096/fj.10-162040 2022;126(49):10305-10316.
doi: 10.1021/acs.jpcb.2c06217
17. Mifune Y, Matsumoto T, Kawamoto A, et al. Local delivery
of granulocyte colony stimulating factor-mobilized CD34- 29. Lim HJ, Jang WB, Rethineswaran VK, et al. StemRegenin-1
positive progenitor cells using bioscaffold for modality of attenuates endothelial progenitor cell senescence by
unhealing bone fracture. Stem Cells. 2008;26(6):1395-1405. regulating the AhR pathway-mediated CYP1A1 and ROS
doi: 10.1634/stemcells.2007-0820 generation. Cells. 2023;12(15):2005.
doi: 10.3390/cells12152005
18. Matsumoto T, Kawamoto A, Kuroda R, et al. Therapeutic
potential of vasculagenesis and osteogenesis promoted by 30. Kang D, Lee YB, Yang GH, et al. FeS(2)-incorporated
peripheral blood CD34-positive cells for functional bone 3D PCL scaffold improves new bone formation and
healing. Am J Pathol. 2006;169(4):1440-1457. neovascularization in a rat calvarial defect model. Int J
doi: 10.2353/ajpath.2006.060064 Bioprint. 2023;9(1):636.
doi: 10.18063/ijb.v9i1.636
19. Boitano AE, Wang J, Romeo R, et al. Aryl hydrocarbon
receptor antagonists promote the expansion of human 31. Jang MJ, Bae SK, Jung YS, et al. Enhanced wound healing
hematopoietic stem cells. Science. 2010;329(5997):1345-1348. using a 3D printed VEGF-mimicking peptide incorporated
doi: 10.1126/science.1191536 hydrogel patch in a pig model. Biomed Mater. 2021;16(4).
doi: 10.1088/1748-605X/abf1a8
20. Wagner JE Jr, Brunstein CG, Boitano AE, et al. Phase I/
II trial of StemRegenin-1 expanded umbilical cord blood 32. Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot
hematopoietic stem cells supports testing as a stand-alone NM, Yener B. Histopathological image analysis: a review.
graft. Cell Stem Cell. 2016;18(1):144-155. IEEE Rev Biomed Eng. 2009;2:147-171.
doi: 10.1016/j.stem.2015.10.004 doi: 10.1109/RBME.2009.2034865
Volume 10 Issue 3 (2024) 275 doi: 10.36922/ijb.1931

