Page 307 - IJB-10-3
P. 307
International Journal of Bioprinting Design and optimization of 3DP bioscaffolds
26. Brown DA, MacLellan WR, Laks H, Dunn JCY, Wu BM, 37. Acevedo CA, Weinstein-Oppenheimer CR, Brown DI,
Beygui RE. Analysis of oxygen transport in a diffusion‐ Huebner H, Buchholz R, Young ME. A mathematical
limited model of engineered heart tissue. Biotechnol Bioeng. model for the design of fibrin microcapsules with skin cells.
2007;97(4):962-975. Bioprocess Biosyst Eng. 2009;32:341-351.
doi: 10.1002/bit.21295 doi: 10.1007/s00449-008-0253-1
27. Yu P, Lee T-S, Zeng Y, Low HT. Fluid dynamics and oxygen 38. McMahon D, Anderson PA, Nassar R, et al. C2C12 cells:
transport in a micro-bioreactor with a tissue engineering biophysical, biochemical, and immunocytochemical
scaffold. Int J Heat Mass Transfer. 2009;52:316-327. properties. Am J Physiol. 1994;266 6 Pt 1:C1795-802.
doi: 10.1016/j.ijheatmasstransfer.2008.06.021 doi: 10.1152/ajpcell.1994.266.6.c1795
28. Mokhtari-Jafari F, Amoabediny G, Haghighipour N, et 39. Schlie S, Gruene M, Dittmar H, Chichkov BN. Dynamics of
al. Mathematical modeling of cell growth in a 3D scaffold cell attachment: adhesion time and force. Tissue Eng Part C,
and validation of static and dynamic cultures. Eng Life Sci. Methods. 2012;18(9):688-696.
2016;16(3):290-298. doi: 10.1089/ten.tec.2011.0635
doi: 10.1002/elsc.201500047
40. Ricotti L, Taccola S, Pensabene V, et al. Adhesion and
29. Coletti F, Macchietto S, Elvassore N. Mathematical modeling proliferation of skeletal muscle cells on single layer
of three-dimensional cell cultures in perfusion bioreactors. poly(lactic acid) ultra-thin films. Biomed Microdevices.
Ind Eng Chem Res. 2006;45:8158-8169. 2010;12:809-819.
doi: 10.1016/S1570-7946(06)80292-0 doi: 10.1007/s10544-010-9435-0
30. Nascu I, Sebastia‐Saez D, Chen T, Du W. A combined 41. Zhou B, Yang B, Liu Q, et al. Effects of univariate stiffness
computational-fluid-dynamics model and control strategies and degradation of DNA hydrogels on the transcriptomics
for perfusion bioreactor systems in tissue engineering. of neural progenitor cells. J Am Chem Soc. 2023;145(16):
IFAC-PapersOnLine. 2021;54(3):324-329. 8954-8964.
doi: 10.1016/j.ifacol.2021.08.262 doi: 10.1021/jacs.2c13373
31. Han X, Bibb R, Harris RA. Design of bifurcation junctions 42. Jarrett AM, Lima EABF, Hormuth DA, et al. Mathematical
in artificial vascular vessels additively manufactured for skin models of tumor cell proliferation: a review of the literature.
tissue engineering. J Vis Lang Comput. 2015;28:238-249. Expert Rev Anticancer Ther. 2018;18:1271-1286.
doi: 10.1016/j.jvlc.2014.12.005 doi: 10.1080/14737140.2018.1527689
32. Han X, Bibb R, Harris RA. Engineering design of artificial 43. Kim K, Dean D, Mikos AG, Fisher JP. Effect of initial cell
vascular junctions for 3D printing. Biofabrication. seeding density on early osteogenic signal expression of
2016;8(2):025018. rat bone marrow stromal cells cultured on cross-linked
doi: 10.1088/1758-5090/8/2/025018 poly(propylene fumarate) disks. Biomacromolecules.
33. Nie J, Gao Q, Xie C, et al. Construction of multi-scale 2009;10(7):1810-1817.
vascular chips and modelling of the interaction between doi: 10.1021/bm900240k
tumours and blood vessels. Mater Horiz. 2020;7:82-92. 44. Yin J, Yan M, Wang Y-c, Fu J, Suo H. 3D bioprinting of low-
doi: 10.1039/C9MH01283D concentration cell-laden gelatin methacrylate (GelMA)
34. Soltani M, Maleki MA, Kaboodrangi AH, Mosadegh B. bioinks with a two-step cross-linking strategy. ACS Appl
Optimization of oxygen transport within a tissue engineered Mater Interfaces. 2018;10(8):6849-6857.
vascular graft model using embedded micro-channels doi: 10.1021/acsami.7b16059
inspired by vasa vasorum. Chem Eng Sci. 2018;184:1-13. 45. Cámara-Torres M, Sinha R, Mota C, Moroni L. Improving
doi: 10.1016/j.ces.2018.02.044
cell distribution on 3D additive manufactured scaffolds
35. Poon C. Measuring the density and viscosity of culture media through engineered seeding media density and viscosity.
for optimized computational fluid dynamics analysis of in Acta Biomater. 2020;101:183-195.
vitro devices. J Mech Behav Biomed Mater. 2022; 126:105024. doi: 10.1016/j.actbio.2019.11.020
doi: 10.1016/j.jmbbm.2021.105024
46. Su J, Hua S, Chen A, et al. Three-dimensional printing
36. Haselgrove JC, Shapiro IM, Silverton SF. Computer modeling of gyroid-structured composite bioceramic scaffolds
of the oxygen supply and demand of cells of the avian growth with tuneable degradability. Biomater Adv. 2022;133:
cartilage. Am J Physiol. 1993;265 2 Pt 1:C497-506. 112595.
doi: 10.1152/ajpcell.1993.265.2.C497 doi: 10.1016/j.msec.2021.112595
Volume 10 Issue 3 (2024) 299 doi: 10.36922/ijb.1838

