Page 306 - IJB-10-3
P. 306

International Journal of Bioprinting                              Design and optimization of 3DP bioscaffolds




            References                                         14.  Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular
                                                                  networks and functional intravascular topologies within
            1.   Ventola CL. Medical applications for 3D printing: current   biocompatible hydrogels. Science. 2019;364:458-464.
               and projected uses. P&T. 2014;39(10):704-711.      doi: 10.1126/science.aav9750
            2.   Reddy VS, Ramasubramanian B, Telrandhe VM,    15.  He N, Wang X, Shi L, et al. Photoinhibiting via simultaneous
               Ramakrishna S. Contemporary standpoint and future of   photoabsorption and free-radical reaction for high-fidelity
               3D bioprinting in tissue/organs printing. Curr Opin Biomed   light-based bioprinting. Nat Commun. 2023;14(1):3063.
               Eng. 2023;27:100461.                               doi: 10.1038/s41467-023-38838-2
               doi: 10.1016/j.cobme.2023.100461                16.  Bernal PN, Bouwmeester MC, Madrid-Wolff J, et al.
            3.   Murphy SV, Atala AJ. 3D bioprinting of tissues and organs.   Volumetric bioprinting of organoids and optically tuned
               Nat Biotechnol. 2014;32:773-785.                   hydrogels to build liver‐like metabolic biofactories.  Adv
               doi: 10.1038/nbt.2958                              Mater. 2022;34(15):2110054.
                                                                  doi: 10.1002/adma.202110054
            4.   Muskan,  Gupta  D,  Negi  NP. 3D  bioprinting:  printing  the
               future and recent advances. Bioprinting. 2022;27:2405-8866.   17.  Wang M, Li W, Hao J, et al. Molecularly cleavable bioinks
               doi: 10.1016/j.bprint.2022.e00211                  facilitate high-performance digital light processing-based
                                                                  bioprinting of functional volumetric soft tissues.  Nat
            5.   Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin   Commun. 2022;13(1):3317.
               CT. Progress in 3D bioprinting technology for tissue/organ      doi: 10.1038/s41467-022-31002-2
               regenerative engineering. Biomaterials. 2020;226:119536.   18.  Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-
               doi: 10.1016/j.biomaterials.2019.119536            dimensional bioprinting of thick vascularized tissues. Proc
            6.   Li T, Chang J, Zhu Y, Wu C. 3D printing of bioinspired   Natl Acad Sci. 2016;113:3179-3184.
               biomaterials for tissue regeneration.  Adv Healthc Mater.      doi: 10.1073/pnas.1521342113
               2020;9(23):2000208.                             19.  Han X, Courseaus J, Khamassi J, et al. Optimized vascular
               doi: 10.1002/adhm.202000208                        network by stereolithography for tissue engineered skin. Int
            7.   Javaid M, Haleem A. 3D printing applications towards the   J Bioprint. 2018;4(2).
               required  challenge  of  stem  cells  printing.  Clin Epidemiol      doi: 10.18063/ijb.v4i2.134
               Global Health. 2020;8:862-867.                  20.  Fang  Y,  Ouyang  L,  Zhang  T,  Wang  C,  Lu  B,  Sun  W.
               doi: 10.1016/j.cegh.2020.02.014                    Optimizing bifurcated channels within an anisotropic
            8.   Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell in   scaffold for engineering vascularized oriented tissues. Adv
               the ink: improving biofabrication by printing stem cells for   Healthc Mater. 2020;9(24):2000782.
               skeletal regenerative medicine. Biomaterials. 2019;20910-24.      doi: 10.1002/adhm.202000782
               doi: 10.1016/j.biomaterials.2019.04.009         21.  Margolis EA, Friend NE, Rolle MW, Alsberg E, Putnam AJ.
                                                                  Manufacturing the multiscale vascular hierarchy: progress
            9.   Sun Y, Yu K, Gao Q, He Y. Projection-based 3D bioprinting
               for hydrogel scaffold manufacturing.  Bio-Des Manuf.   toward solving the grand challenge of tissue engineering.
                                                                  Trends Biotechnol. 2023;41(11):P1400-1416.
               2022;5:633-639.                                    doi: 10.1016/j.tibtech.2023.04.003
               doi: 10.1007/s42242-022-00189-0
                                                               22.  Nascu I, Sebastia‐Saez D, Chen T, Nascu I, Du W. Global
            10.  He Y-X, Wang F, Wang X, Zhang J, Wang D, Huang X. A   sensitivity analysis for a perfusion bioreactor based on CFD
               photocurable hybrid chitosan/acrylamide bioink for DLP   modelling. Comput Chem Eng. 2022;163:107829.
               based 3D bioprinting. Mater Des. 2021;202:109588.      doi: 10.1016/j.compchemeng.2022.107829
               doi: 10.1016/j.matdes.2021.109588
                                                               23.  Capuana E, Pavia FC, Lombardo ME, et al. Mathematical and
            11.  Tao J-L, Zhu S, Liao X, et al. DLP-based bioprinting of void-  numerical modeling of an airlift perfusion bioreactor for tissue
               forming hydrogels for enhanced stem-cell-mediated bone   engineering applications. Biochem Eng J. 2021;178:108298.
               regeneration. Mater Today Bio. 2022;17:100487.      doi: 10.1016/j.bej.2021.108298
               doi: 10.1016/j.mtbio.2022.100487
                                                               24.  Zhu X, Chen F, Cao H-Q, Li L, He N, Han X. Design and
            12.  Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of   fused deposition modeling of triply periodic minimal
               collagen to rebuild components of the human heart. Science.   surface  scaffolds with channels and hydrogel  for breast
               2019;365:482-487.                                  reconstruction. Int J Bioprint. 2023;9(2).
               doi: 10.1126/science.aav9051                       doi: 10.18063/ijb.685
            13.  Lei  D, Yang  Y, Liu  Z, et  al. 3D  printing of  biomimetic   25.  Allen JW, Bhatia SN. Formation of steady-state oxygen
               vasculature for tissue regeneration.  Mater Horiz.   gradients in vitro: application to liver zonation. Biotechnol
               2019;6(6):1197-1206.                               Bioeng. 2003;82(3):253-262.
               doi: 10.1039/C9MH00174C                            doi: 10.1002/bit.10569

            Volume 10 Issue 3 (2024)                       298                                doi: 10.36922/ijb.1838
   301   302   303   304   305   306   307   308   309   310   311