Page 347 - IJB-10-3
P. 347
International Journal of Bioprinting Acoustic analysis of 3D-printed ossicles
Ethics approval and consent to participate 8. Aibara R, Welsh JT, Puria S, Goode RL. Human middle-
ear sound transfer function and cochlear input impedance.
Not applicable. Hear Res. 2001;152(1-2):100-109.
doi: 10.1016/S0378-5955(00)00240-9
Consent for publication
9. Gan RZ, Sun Q, Dyer RK, Chang K-H, Dormer KJ. Three-
Not applicable. dimensional modeling of middle ear biomechanics and its
applications. Otol Neurotol. 2002;23(3):271-280.
Availability of data doi: 10.1097/00129492-200205000-00008
The data generated in this study are available from the 10. Huber A, Linder T, Dillier N, et al. Intraoperative
corresponding author upon reasonable request. assessment of stapes movement. Ann Otol Rhinol Laryngol.
2001;110(1):31-35.
References doi: 10.1177/000348940111000106
11. Rohani SA, Ghomashchi S, Agrawal SK, Ladak HM.
1. Bornitz M, Hardtke HJ, Zahnert T. Evaluation of implantable Estimation of the Young’s modulus of the human pars tensa
actuators by means of a middle ear simulation model. Hear using in-situ pressurization and inverse finite-element
Res. 2010;263(1-2):145-151. analysis. Hear Res. 2017;345:69-78.
doi: 10.1016/j.heares.2010.02.007 doi: 10.1016/j.heares.2017.01.002
2. Cheng JT, Ravicz M, Guignard J, Furlong C, Rosowski JJ. 12. De Greef D, Aernouts J, Aerts J, et al. Viscoelastic
The effect of ear canal orientation on tympanic membrane properties of the human tympanic membrane studied with
motion and the sound field near the tympanic membrane. stroboscopic holography and finite element modeling. Hear
J Assoc Res Otolaryngol. 2015;16:413-432. Res. 2014;312:69-80.
doi: 10.1007/s10162-015-0516-x doi: 10.1016/j.heares.2014.03.002
3. Eiber A. Mechanical modeling and dynamical behavior 13. Salmi M. Additive manufacturing processes in medical
of the human middle ear. Audiol Neurotol. 1999;4(3-4): applications. Materials. 2021;14(1):191.
170-177. doi: 10.3390/ma14010191
doi: 10.1159/000013837 14. Iwasa J, Engebretsen L, Shima Y, Ochi M. Clinical application
4. Ferris P, Prendergast PJ. Middle-ear dynamics before and of scaffolds for cartilage tissue engineering. Knee Surg Sports
after ossicular replacement. J Biomech. 2000;33(5):581-590. Traumatol Arthrosc. 2009;17(6):561-577.
doi: 10.1016/s0021-9290(99)00213-4 doi: 10.1007/s00167-008-0663-2
5. Aernouts J, Aerts JR, Dirckx JJ. Mechanical properties of 15. Liu H, Cheng J, Yang J, et al. Concept and evaluation of a
human tympanic membrane in the quasi-static regime new piezoelectric transducer for an implantable middle ear
from in situ point indentation measurements. Hear Res. hearing device. Sensors. 2017;17(11):2515.
2012;290(1-2):45-54. doi: 10.3390/s17112515
doi: 10.1016/j.heares.2012.05.001
16. Xue L, Liu H, Yang J, Liu S, Zhao Y, Huang X. Research on
6. De Greef D, Pires F, Dirckx JJ. Effects of model definitions coupling effects of actuator and round window membrane
and parameter values in finite element modeling of human on reverse stimulation of human cochlea. Proc Inst Mech Eng
middle ear mechanics. Hear Res. 2017;344:195-206. H. 2021;235(4):447-458.
doi: 10.1016/j.heares.2016.11.011 doi: 10.1177/0954411920987960
7. Kim N, Steele CR, Puria S. The importance of the hook 17. Kuru I, Maier H, Müller M, Lenarz T, Lueth TC. A 3D-printed
region of the cochlea for bone-conduction hearing. Biophys functioning anatomical human middle ear model. Hear Res.
J. 2014;107(1):233-241. 2016;340:204-213.
doi: 10.1016/j.bpj.2014.04.052 doi: 10.1016/j.heares.2015.12.025
Volume 10 Issue 3 (2024) 339 doi: 10.36922/ijb.2040

