Page 38 - IJB-10-3
P. 38

International Journal of Bioprinting                                   Supramolecular hydrogels as bioinks




            13.  Hu J-H, Huang Y, Redshaw C, Tao Z, Xiao X. Cucurbit [n]   2020;13(10).
               uril-based supramolecular hydrogels: synthesis, properties      doi: 10.3390/ma13102211
               and applications. Coord Chem Rev. 2023;489:215194.   25.  Chandramohan Y,  Jeganathan K,  Sivanesan S,  et al.
               doi: 10.1016/j.ccr.2023.215194
                                                                  Assessment of human ovarian follicular fluid derived
            14.  Raymond DM, Abraham BL, Fujita T, et al. Low-molecular-  mesenchymal  stem  cells  in  chitosan/PCL/Zn  scaffold for
               weight supramolecular hydrogels for sustained and localized   bone tissue regeneration. Life Sci. 2021;264.
               in vivo drug delivery.  ACS Appl Bio Mater. 2019;2(5):      doi: 10.1016/j.lfs.2020.118502
               2116-2124.                                      26.  Wahid F, Zhou Y-N, Wang H-S, Wan T, Zhong C, Chu
               doi: 10.1021/acsabm.9b00125
                                                                  L-Q. Injectable self-healing carboxymethyl chitosan-zinc
            15.  Hao Z,  Li H,  Wang Y,  et al.  Supramolecular peptide   supramolecular  hydrogels  and  their  antibacterial  activity.
               nanofiber hydrogels for bone tissue engineering:   Int J Biol Macromol. 2018;114:1233-1239.
               from multihierarchical fabrications to comprehensive      doi: 10.1002/adhm.201900847
               applications. Adv Sci. 2022;9(11):2103820.      27.  Xu J, Feng Q, Lin S, et al. Injectable stem cell-laden
               doi: 10.1002/advs.202103820
                                                                  supramolecular hydrogels enhance in situ osteochondral
            16.  Dong RJ, Pang Y, Su Y, Zhu XY. Supramolecular hydrogels:   regeneration  via  the  sustained  co-delivery  of  hydrophilic
               synthesis,  properties  and  their  biomedical  applications.   and hydrophobic chondrogenic molecules.  Biomaterials.
               Biomater Sci. 2015;3(7):937-954.                   2019;210:51-61.
               doi: 10.1039/c4bm00448e                            doi: 10.1016/j.biomaterials.2019.04.031
            17.  Wang X, Wang J, Yang YY, Yang F, Wu DC. Fabrication of   28.  Grosskopf AK, Roth GA, Smith AA, Gale EC, Hernandez
               multi-stimuli  responsive  supramolecular hydrogels based   HL, Appel EA. Injectable supramolecular polymer–
               on host-guest inclusion complexation of a tadpole-shaped   nanoparticle hydrogels enhance human mesenchymal stem
               cyclodextrin derivative with the azobenzene dimer. Polym   cell delivery. Bioeng Transl Med. 2020;5(1):e10147.
               Chem-Uk. 2017;8(26):3901-3909.                     doi: 10.1186/s40824-018-0122-1
               doi: 10.1039/c7py00698e
                                                               29.  Aguado BA, Mulyasasmita W, Su J, Lampe KJ, Heilshorn SC.
            18.  Chen  Y,  Pang  XH,  Dong  CM.  Dual  stimuli-responsive   Improving viability of stem cells during syringe needle flow
               supramolecular polypeptide-based hydrogel and reverse   through the design of hydrogel cell carriers. Tissue Eng Part
               micellar  hydrogel  mediated  by  host-guest  chemistry.  Adv   A. 2012;18(7-8):806-815.
               Funct Mater. 2010;20(4):579-586.                   doi: 10.1021/acs.chemrev.0c00015
               doi: 10.1002/adfm.200901400
                                                               30.  Lopez Hernandez H, Grosskopf AK, Stapleton LM, Agmon
            19.  Ghosh G, Barman R, Sarkar J, Ghosh S. pH-responsive   G,  Appel  EA.  Non‐Newtonian  polymer–nanoparticle
               biocompatible supramolecular peptide hydrogel.  J Phys   hydrogels enhance cell viability during injection. Macromol
               Chem B. 2019;123(27):5909-5915.                    Biosci. 2019;19(1):1800275.
               doi: 10.1021/acs.jpcb.9b02999                      doi: 10.1016/j.polymer.2018.08.029
            20.  Wang Q, Zhang YY, Dai XY, Shi XH, Liu WG. A high strength   31.  Mol EA, Lei Z, Roefs MT, et al. Injectable supramolecular
               pH responsive supramolecular copolymer hydrogel.  Sci   ureidopyrimidinone hydrogels provide sustained release
               China Technol Sc. 2017;60(1):78-83.                of extracellular vesicle therapeutics.  Adv  Healthc  Mater.
               doi: 10.1007/s11431-016-0698-0                     2019;8(20):1900847.
                                                                  doi: 10.1002/anie.201804400
            21.  Zhu CN, Zheng SY, Qiu HN, et al. Plastic-like supramolecular
               hydrogels  with  polyelectrolyte/surfactant  complexes  32.  Meis  CM,  Grosskopf  AK,  Correa  S,  Appel  EA.  Injectable
               as physical crosslinks.  Macromolecules. 2021;54(17):   supramolecular polymer-nanoparticle hydrogels for cell and
               8052-8066.                                         drug delivery applications. J Vis Exp: JoVE. 2021;(168).
               doi: 10.1021/acs.macromol.1c00835                  doi: 10.1002/anie.201804400
            22.  Bernhard S, Tibbitt MW. Supramolecular engineering   33.  Zhao Y, Song S, Ren X, Zhang J, Lin Q, Zhao Y.
               of hydrogels for drug delivery.  Adv Drug Deliv Rev.   Supramolecular adhesive hydrogels for tissue engineering
               2021;171:240-256.                                  applications. Chem Rev. 2022;122(6):5604-5640.
               doi: 10.1016/j.addr.2021.02.002                    doi: 10.1021/acs.chemrev.1c00815
            23.  Raina N, Pahwa R, Bhattacharya J, et al. Drug delivery   34.  Morwood AJ, El-Karim IA, Clarke SA, Lundy FT. The
               strategies and biomedical significance of hydrogels:   role of extracellular matrix (ECM) adhesion motifs in
               translational considerations. Pharmaceutics. 2022;14(3):574.   functionalised hydrogels. Molecules. 2023;28(12):4616.
               doi: 10.1002/btm2.10147                            doi: 10.3390/molecules28124616
            24.  O’Connor JP, Kanjilal D, Teitelbaum M, Lin SS, Cottrell JA.   35.  Zhang ZP, Hu J, Ma PX. Nanofiber-based delivery of
               Zinc as a therapeutic agent in bone regeneration. Materials.   bioactive agents and stem cells to bone sites. Adv Drug Deliv



            Volume 10 Issue 3 (2024)                        30                                doi: 10.36922/ijb.3223
   33   34   35   36   37   38   39   40   41   42   43