Page 40 - IJB-10-3
P. 40
International Journal of Bioprinting Supramolecular hydrogels as bioinks
based biomacromolecular assemblies. Angew Chem. 2022;32(23):2200710.
2021;133(8):3914-3924. doi: 10.1002/adfm.202200710
doi: 10.1002/anie.202009797
70. Wei W, Liu W, Kang H, et al. A one-stone-two-birds strategy
59. Wang Z, Shui M, Wyman IW, Zhang Q-W, Wang R. Cucurbit for osteochondral regeneration based on a 3D printable
[8] uril-based supramolecular hydrogels for biomedical biomimetic scaffold with kartogenin biochemical stimuli
applications. RSC Med Chem. 2021;12(5):722-729. gradient. Adv Healthc Mater. 2023;12(15):2300108.
doi: 10.3390/molecules28083566 doi: 10.1002/adhm.202300108
60. Meng Z-J, Liu J, Yu Z, et al. Viscoelastic hydrogel microfibers 71. Jain M, Nowak BP, Ravoo BJ. Supramolecular hydrogels
exploiting cucurbit [8] uril host–guest chemistry and based on cyclodextrins: progress and perspectives. Chem
microfluidics. ACS Appl Mater Interfaces. 2020;12(15): Nano Mat. 2022;8(5):e202200077.
17929-17935. doi: 10.1002/cnma.202200077
doi: 10.1021/acsami.9b21240
72. Rey-Rico A, Babicz H, Madry H, Concheiro A,
61. Zou L, Braegelman AS, Webber MJ. Dynamic supramolecular Alvarez-Lorenzo C, Cucchiarini M. Supramolecular
hydrogels spanning an unprecedented range of host–guest polypseudorotaxane gels for controlled delivery of rAAV
affinity. ACS Appl Mater Interfaces. 2019;11(6):5695-5700. vectors in human mesenchymal stem cells for regenerative
doi: 10.1021/acsami.8b22151 medicine. Int J Pharm. 2017;531(2):492-503.
doi: 10.1016/j.ijpharm.2017.05.050
62. Madl AC, Myung D. Supramolecular host–guest hydrogels
for corneal regeneration. Gels. 2021;7(4):163. 73. Alvarez-Lorenzo C, Garcia-Gonzalez CA, Concheiro A.
doi: 10.3390/gels7040163 Cyclodextrins as versatile building blocks for regenerative
medicine. JCR. 2017;268:269-281.
63. Wang Y, Zhang X, Wan K, Zhou N, Wei G, Su Z.
Supramolecular peptide nano-assemblies for cancer doi: 10.1016/j.jconrel.2017.10.038
diagnosis and therapy: from molecular design to 74. Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang
material synthesis and function-specific applications. J F. Functional supramolecular polymeric networks: the
Nanobiotechnol. 2021;19(1):1-31. marriage of covalent polymers and macrocycle-based host–
doi: 10.1186/s12951-021-00999-x guest interactions. Chem Rev. 2020;120(13):6070-6123.
doi: 10.1021/acs.chemrev.9b00839
64. Wang H, Zhu H, Fu W, et al. A high strength self‐healable
antibacterial and anti‐inflammatory supramolecular polymer 75. Harada A, Okada M, Li J, Kamachi M. Preparation
hydrogel. Macromol Rapid Commun. 2017;38(9):1600695. and characterization of inclusion complexes of poly
doi: 10.1002/marc.201600695 (propylene glycol) with cyclodextrins. Macromolecules.
1995;28(24):8406-8411.
65. Park KM, Roh JH, Sung G, Murray J, Kim K. Self‐healable
supramolecular hydrogel formed by nor‐seco‐cucurbit doi: 10.1021/ma00128a060
[10] uril as a supramolecular crosslinker. Chem Asian J. 76. Simões S, Veiga F, Torres-Labandeira J, et al. Syringeable
2017;12(13):1461-1464. pluronic–α-cyclodextrin supramolecular gels for
doi: 10.1002/asia.201700386 sustained delivery of vancomycin. Eur J Pharm Biopharm.
2012;80(1):103-112.
66. Xiao T, Xu L, Zhou L, Sun X-Q, Lin C, Wang L. Dynamic
hydrogels mediated by macrocyclic host–guest interactions. doi: 10.1016/j.ejpb.2011.09.017
J Mater Chem B. 2019;7(10):1526-1540. 77. Li J, Li X, Ni X, Wang X, Li H, Leong KW. Self-assembled
doi: 10.1039/C8TB02339E supramolecular hydrogels formed by biodegradable
PEO–PHB–PEO triblock copolymers and α-cyclodextrin
67. Zhou Y, Zhang Y, Dai Z, Jiang F, Tian J, Zhang W. A super-
stretchable, self-healing and injectable supramolecular for controlled drug delivery. Biomaterials. 2006;27(22):
hydrogel constructed by a host–guest crosslinker. Biomater 4132-4140.
Sci. 2020;8(12):3359-3369. doi: 10.1016/j.biomaterials.2006.03.025
doi: 10.1039/D0BM00290A 78. Khodaverdi E, Heidari Z, Tabassi SAS, et al. Injectable
supramolecular hydrogel from insulin-loaded triblock PCL-
68. Miller B, Hansrisuk A, Highley CB, Caliari SR. Guest–host
supramolecular assembly of injectable hydrogel nanofibers PEG-PCL copolymer and γ-cyclodextrin with sustained-
for cell encapsulation. ACS Biomater Sci Eng. 2021;7(9): release property. AAPS Pharm Sci Tech. 2015;16:140-149.
4164-4174. doi: 10.1208/s12249-014-0198-4
doi: 10.1021/acsbiomaterials.1c00275 79. Rey-Rico A, Cucchiarini M. Supramolecular cyclodextrin-
based hydrogels for controlled gene delivery. Polymers.
69. Dai W, Zhang L, Yu Y, et al. 3D bioprinting of heterogeneous
constructs providing tissue-specific microenvironment 2019;11(3):514.
based on host–guest modulated dynamic hydrogel doi: 10.3390/polym11030514
bioink for osteochondral regeneration. Adv Funct Mater. 80. Kauscher U, Stuart MCA, Drücker P, Galla H-J, Ravoo BJ.
Volume 10 Issue 3 (2024) 32 doi: 10.36922/ijb.3223

