Page 40 - IJB-10-3
P. 40

International Journal of Bioprinting                                   Supramolecular hydrogels as bioinks




               based biomacromolecular assemblies.  Angew Chem.   2022;32(23):2200710.
               2021;133(8):3914-3924.                             doi: 10.1002/adfm.202200710
               doi: 10.1002/anie.202009797
                                                               70.  Wei W, Liu W, Kang H, et al. A one-stone-two-birds strategy
            59.  Wang Z, Shui M, Wyman IW, Zhang Q-W, Wang R. Cucurbit   for osteochondral regeneration based on a 3D printable
               [8] uril-based supramolecular hydrogels for biomedical   biomimetic scaffold with kartogenin biochemical stimuli
               applications. RSC Med Chem. 2021;12(5):722-729.    gradient. Adv Healthc Mater. 2023;12(15):2300108.
               doi: 10.3390/molecules28083566                     doi: 10.1002/adhm.202300108
            60.  Meng Z-J, Liu J, Yu Z, et al. Viscoelastic hydrogel microfibers   71.  Jain M,  Nowak BP,  Ravoo BJ. Supramolecular  hydrogels
               exploiting cucurbit [8] uril host–guest chemistry and   based on cyclodextrins: progress and perspectives.  Chem
               microfluidics.  ACS Appl Mater Interfaces. 2020;12(15):   Nano Mat. 2022;8(5):e202200077.
               17929-17935.                                       doi: 10.1002/cnma.202200077
               doi: 10.1021/acsami.9b21240
                                                               72.  Rey-Rico A, Babicz H, Madry H, Concheiro A,
            61.  Zou L, Braegelman AS, Webber MJ. Dynamic supramolecular   Alvarez-Lorenzo C, Cucchiarini M. Supramolecular
               hydrogels spanning an unprecedented range of host–guest   polypseudorotaxane gels for controlled delivery of rAAV
               affinity. ACS Appl Mater Interfaces. 2019;11(6):5695-5700.   vectors in human mesenchymal stem cells for regenerative
               doi: 10.1021/acsami.8b22151                        medicine. Int J Pharm. 2017;531(2):492-503.
                                                                  doi: 10.1016/j.ijpharm.2017.05.050
            62.  Madl AC, Myung D. Supramolecular host–guest hydrogels
               for corneal regeneration. Gels. 2021;7(4):163.   73.  Alvarez-Lorenzo C, Garcia-Gonzalez CA, Concheiro A.
               doi: 10.3390/gels7040163                           Cyclodextrins as versatile building blocks for regenerative
                                                                  medicine. JCR. 2017;268:269-281.
            63.  Wang Y, Zhang X, Wan K, Zhou N, Wei G, Su Z.
               Supramolecular peptide nano-assemblies for cancer      doi: 10.1016/j.jconrel.2017.10.038
               diagnosis and therapy: from molecular design to   74.  Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang
               material synthesis and function-specific applications.  J   F.  Functional  supramolecular  polymeric  networks:  the
               Nanobiotechnol. 2021;19(1):1-31.                   marriage of covalent polymers and macrocycle-based host–
               doi: 10.1186/s12951-021-00999-x                    guest interactions. Chem Rev. 2020;120(13):6070-6123.
                                                                  doi: 10.1021/acs.chemrev.9b00839
            64.  Wang H, Zhu H, Fu W, et al. A high strength self‐healable
               antibacterial and anti‐inflammatory supramolecular polymer   75.  Harada A, Okada M, Li J, Kamachi M. Preparation
               hydrogel. Macromol Rapid Commun. 2017;38(9):1600695.   and characterization of inclusion complexes of poly
               doi: 10.1002/marc.201600695                        (propylene  glycol)  with  cyclodextrins.  Macromolecules.
                                                                  1995;28(24):8406-8411.
            65.  Park KM, Roh JH, Sung G, Murray J, Kim K. Self‐healable
               supramolecular hydrogel formed by nor‐seco‐cucurbit      doi: 10.1021/ma00128a060
               [10] uril as a supramolecular crosslinker.  Chem Asian J.   76.  Simões S, Veiga F, Torres-Labandeira J, et al. Syringeable
               2017;12(13):1461-1464.                             pluronic–α-cyclodextrin  supramolecular  gels  for
               doi: 10.1002/asia.201700386                        sustained delivery of vancomycin. Eur J Pharm Biopharm.
                                                                  2012;80(1):103-112.
            66.  Xiao T, Xu L, Zhou L, Sun X-Q, Lin C, Wang L. Dynamic
               hydrogels mediated by macrocyclic host–guest interactions.      doi: 10.1016/j.ejpb.2011.09.017
               J Mater Chem B. 2019;7(10):1526-1540.           77.  Li J, Li X, Ni X, Wang X, Li H, Leong KW. Self-assembled
               doi: 10.1039/C8TB02339E                            supramolecular hydrogels formed by biodegradable
                                                                  PEO–PHB–PEO  triblock copolymers  and α-cyclodextrin
            67.  Zhou Y, Zhang Y, Dai Z, Jiang F, Tian J, Zhang W. A super-
               stretchable, self-healing and injectable supramolecular   for controlled drug delivery.  Biomaterials. 2006;27(22):
               hydrogel constructed by a host–guest crosslinker. Biomater   4132-4140.
               Sci. 2020;8(12):3359-3369.                         doi: 10.1016/j.biomaterials.2006.03.025
               doi: 10.1039/D0BM00290A                         78.  Khodaverdi  E,  Heidari Z,  Tabassi  SAS,  et  al.  Injectable
                                                                  supramolecular hydrogel from insulin-loaded triblock PCL-
            68.  Miller B, Hansrisuk A, Highley CB, Caliari SR. Guest–host
               supramolecular assembly of injectable hydrogel nanofibers   PEG-PCL copolymer and γ-cyclodextrin with sustained-
               for  cell  encapsulation.  ACS Biomater Sci Eng.  2021;7(9):   release property. AAPS Pharm Sci Tech. 2015;16:140-149.
               4164-4174.                                         doi: 10.1208/s12249-014-0198-4
               doi: 10.1021/acsbiomaterials.1c00275            79.  Rey-Rico A, Cucchiarini M. Supramolecular cyclodextrin-
                                                                  based hydrogels  for  controlled gene  delivery.  Polymers.
            69.  Dai W, Zhang L, Yu Y, et al. 3D bioprinting of heterogeneous
               constructs providing tissue-specific microenvironment   2019;11(3):514.
               based on host–guest modulated dynamic hydrogel      doi: 10.3390/polym11030514
               bioink for osteochondral regeneration.  Adv Funct Mater.   80.  Kauscher U, Stuart MCA, Drücker P, Galla H-J, Ravoo BJ.



            Volume 10 Issue 3 (2024)                        32                                doi: 10.36922/ijb.3223
   35   36   37   38   39   40   41   42   43   44   45