Page 42 - IJB-10-3
P. 42
International Journal of Bioprinting Supramolecular hydrogels as bioinks
103. Li W, Hu X, Chen J, Wei Z, Song C, Huang R. N-(9- doi: 10.1016/j.cis.2020.102163
Fluorenylmethoxycarbonyl)-L-phenylalanine/nano- 114. Chakraborty P, Oved H, Bychenko D, et al. Nanoengineered
hydroxyapatite hybrid supramolecular hydrogels as peptide‐based antimicrobial conductive supramolecular
drug delivery vehicles with antibacterial property and biomaterial for cardiac tissue engineering. Adv Mater.
cytocompatibility. J Mater Sci: Mater Med. 2020;31:1-9. 2021;33(26):2008715.
doi: 10.1007/s10856-020-06410-9
doi: 10.1002/adma.202008715
104. Dang-i AY, Kousar A, Liu J, et al. Mechanically stable 115. Falcone N, Shao T, Andoy NMO, et al. Multi-component
C2-phenylalanine hybrid hydrogels for manipulating peptide hydrogels–a systematic study incorporating
cell adhesion. ACS Appl Mater Interfaces. 2019;11(32): biomolecules for the exploration of diverse, tuneable
28657-28664. biomaterials. Biomater Sci. 2020;8(20):5601-5614.
doi: 10.1021/acsami.9b08655 doi: 10.1039/D0BM01104E
105. Chakraborty P, Ghosh M, Schnaider L, et al. Composite 116. Fichman G, Schneider JP. Utilizing Frémy’s salt to increase
of peptide‐supramolecular polymer and covalent polymer the mechanical rigidity of supramolecular peptide-based gel
comprises a new multifunctional, bio‐inspired soft material. networks. Fbioe. 2021;8:594258.
Macromol Rapid Commun. 2019;40(18):1900175. doi: 10.3389/fbioe.2020.594258
doi: 10.1002/marc.201900175
117. Chowdhuri S, Saha A, Pramanik B, et al. Smart thixotropic
106. Misra R, Sharma A, Shiras A, Gopi HN. Backbone hydrogels by disulfide-linked short peptides for
engineered γ-peptide amphitropic gels for immobilization effective three-dimensional cell proliferation. Langmuir.
of semiconductor quantum dots and 2D cell culture. 2020;36(50):15450-15462.
Langmuir. 2017;33(31):7762-7768. doi: 10.1021/acs.langmuir.0c03324
doi: 10.1021/acs.langmuir.7b01283
118. Mañas-Torres MC, Gila-Vilchez C, Vazquez-Perez FJ,
107. Wu C, Li R, Yin Y, Wang J, Zhang L, Zhong W. Redox- et al. Injectable magnetic-responsive short-peptide
responsive supramolecular hydrogel based on 10-hydroxy supramolecular hydrogels: ex vivo and in vivo evaluation.
camptothecin-peptide covalent conjugates with high ACS Appl Mater Interfaces. 2021;13(42):49692-49704.
loading capacity for drug delivery. Mater Sci Eng C. 2017;76: doi: 10.1021/acsami.1c13972
196-202.
doi: 10.1016/j.msec.2017.03.103 119. Vrehen AF, Rutten MGTA, Dankers PYW. Development
of a fully synthetic corneal stromal construct via
108. Ren C, Gao Y, Liu J, et al. Anticancer supramolecular supramolecular hydrogel engineering. Adv Healthc Mater.
hydrogel of D/L-peptide with enhanced stability and 2023;12(32):2301392.
bioactivity. J Biomed Nanotechnol. 2018;14(6):1125-1134. doi: 10.1002/adhm.202301392
doi: 10.1166/jbn.2018.2564
120. Zhou K, Ding R, Tao X, et al. Peptide-dendrimer-reinforced
109. Wei K, Chen X, Zhao P, et al. Stretchable and bioadhesive bioinks for 3D bioprinting of heterogeneous and biomimetic
supramolecular hydrogels activated by a one-stone–two- in vitro models. Acta Biomater. 2023;169:243-255.
bird postgelation functionalization method. ACS Appl Mater doi: 10.1016/j.actbio.2023.08.008
Interfaces. 2019;11(18):16328-16335.
doi: 10.1021/acsami.9b03029 121. Chiesa I, Ligorio C, Bonatti AF, et al. Modeling the three-
dimensional bioprinting process of β-sheet self-assembling
110. Zhang Y, Zhang H, Zou Q, Xing R, Jiao T, Yan X. An peptide hydrogel scaffolds. Fmedt. 2020;2:571626.
injectable dipeptide–fullerene supramolecular hydrogel doi: 10.3389/fmedt.2020.571626
for photodynamic antibacterial therapy. J Mater Chem B.
2018;6(44):7335-7342. 122. Aronsson C, Jury M, Naeimipour S, et al. Dynamic
doi: 10.1039/C8TB01487F peptide-folding mediated biofunctionalization and
modulation of hydrogels for 4D bioprinting. Biofabrication.
111. Clarke DE, Parmenter CD, Scherman OA. Tunable 2020;12(3):035031.
pentapeptide self‐assembled β‐sheet hydrogels. Angew doi: 10.1088/1758-5090/ab9490
Chem Int Ed. 2018;57(26):7709-7713.
doi: 10.1002/anie.201801001 123. Zhao Y, Xing Y, Wang M, et al. Supramolecular hydrogel
based on an osteogenic growth peptide promotes bone
112. Diaferia C, Netti F, Ghosh M, et al. Bi-functional peptide- defect repair. ACS Omega. 2022;7(13):11395-11404.
based 3D hydrogel-scaffolds. Soft Matter. 2020;16(30): doi: 10.1021/acsomega.2c00501
7006-7017. 124. Yan M, Lewis P, Shah R. Tailoring nanostructure and
doi: 10.1039/D0SM00825G
bioactivity of 3D-printable hydrogels with self-assemble
113. Dorishetty P, Dutta NK, Choudhury NR. Bioprintable tough peptides amphiphile (PA) for promoting bile duct formation.
hydrogels for tissue engineering applications. Adv Colloid Biofabrication. 2018;10(3):035010.
Interface Sci. 2020;281:102163. doi: 10.1088/1758-5090/aac902
Volume 10 Issue 3 (2024) 34 doi: 10.36922/ijb.3223

