Page 42 - IJB-10-3
P. 42

International Journal of Bioprinting                                   Supramolecular hydrogels as bioinks




            103. Li W, Hu X, Chen J, Wei Z, Song C, Huang R. N-(9-     doi: 10.1016/j.cis.2020.102163
               Fluorenylmethoxycarbonyl)-L-phenylalanine/nano-  114. Chakraborty P, Oved H, Bychenko D, et al. Nanoengineered
               hydroxyapatite hybrid supramolecular hydrogels as   peptide‐based antimicrobial conductive supramolecular
               drug delivery vehicles with antibacterial property and   biomaterial for cardiac tissue engineering.  Adv  Mater.
               cytocompatibility. J Mater Sci: Mater Med. 2020;31:1-9.   2021;33(26):2008715.
               doi: 10.1007/s10856-020-06410-9
                                                                  doi: 10.1002/adma.202008715
            104. Dang-i AY, Kousar A, Liu J, et al. Mechanically stable   115. Falcone N, Shao T, Andoy NMO, et al. Multi-component
               C2-phenylalanine hybrid hydrogels for manipulating   peptide hydrogels–a systematic study incorporating
               cell adhesion.  ACS Appl Mater Interfaces. 2019;11(32):   biomolecules for the exploration of diverse, tuneable
               28657-28664.                                       biomaterials. Biomater Sci. 2020;8(20):5601-5614.
               doi: 10.1021/acsami.9b08655                        doi: 10.1039/D0BM01104E
            105. Chakraborty P, Ghosh M, Schnaider L, et al. Composite   116. Fichman G, Schneider JP. Utilizing Frémy’s salt to increase
               of peptide‐supramolecular polymer and covalent polymer   the mechanical rigidity of supramolecular peptide-based gel
               comprises a new multifunctional, bio‐inspired soft material.   networks. Fbioe. 2021;8:594258.
               Macromol Rapid Commun. 2019;40(18):1900175.        doi: 10.3389/fbioe.2020.594258
               doi: 10.1002/marc.201900175
                                                               117. Chowdhuri S, Saha A, Pramanik B, et al. Smart thixotropic
            106. Misra R, Sharma A, Shiras A, Gopi HN. Backbone   hydrogels by disulfide-linked short peptides for
               engineered γ-peptide amphitropic gels for immobilization   effective three-dimensional cell proliferation.  Langmuir.
               of semiconductor quantum dots and 2D cell culture.   2020;36(50):15450-15462.
               Langmuir. 2017;33(31):7762-7768.                   doi: 10.1021/acs.langmuir.0c03324
               doi: 10.1021/acs.langmuir.7b01283
                                                               118. Mañas-Torres MC, Gila-Vilchez C, Vazquez-Perez FJ,
            107. Wu C, Li R, Yin Y, Wang J, Zhang L, Zhong W. Redox-  et al. Injectable magnetic-responsive short-peptide
               responsive supramolecular hydrogel based on 10-hydroxy   supramolecular hydrogels:  ex vivo and  in vivo evaluation.
               camptothecin-peptide covalent conjugates with high   ACS Appl Mater Interfaces. 2021;13(42):49692-49704.
               loading capacity for drug delivery. Mater Sci Eng C. 2017;76:      doi: 10.1021/acsami.1c13972
               196-202.
               doi: 10.1016/j.msec.2017.03.103                 119. Vrehen AF, Rutten MGTA, Dankers PYW. Development
                                                                  of a fully synthetic corneal stromal construct via
            108. Ren C, Gao Y, Liu J, et al. Anticancer supramolecular   supramolecular hydrogel engineering.  Adv Healthc Mater.
               hydrogel  of  D/L-peptide  with  enhanced  stability  and   2023;12(32):2301392.
               bioactivity. J Biomed Nanotechnol. 2018;14(6):1125-1134.      doi: 10.1002/adhm.202301392
               doi: 10.1166/jbn.2018.2564
                                                               120. Zhou K, Ding R, Tao X, et al. Peptide-dendrimer-reinforced
            109. Wei K, Chen X, Zhao P, et al. Stretchable and bioadhesive   bioinks for 3D bioprinting of heterogeneous and biomimetic
               supramolecular hydrogels activated by a one-stone–two-  in vitro models. Acta Biomater. 2023;169:243-255.
               bird postgelation functionalization method. ACS Appl Mater      doi: 10.1016/j.actbio.2023.08.008
               Interfaces. 2019;11(18):16328-16335.
               doi: 10.1021/acsami.9b03029                     121. Chiesa I, Ligorio C, Bonatti AF, et al. Modeling the three-
                                                                  dimensional bioprinting process of β-sheet self-assembling
            110. Zhang Y, Zhang H, Zou Q, Xing R, Jiao T, Yan X. An   peptide hydrogel scaffolds. Fmedt. 2020;2:571626.
               injectable dipeptide–fullerene supramolecular hydrogel      doi: 10.3389/fmedt.2020.571626
               for photodynamic antibacterial therapy.  J Mater Chem B.
               2018;6(44):7335-7342.                           122. Aronsson C, Jury M, Naeimipour S, et al. Dynamic
               doi: 10.1039/C8TB01487F                            peptide-folding  mediated  biofunctionalization  and
                                                                  modulation of hydrogels for 4D bioprinting. Biofabrication.
            111. Clarke DE, Parmenter CD, Scherman OA. Tunable    2020;12(3):035031.
               pentapeptide self‐assembled β‐sheet hydrogels.  Angew      doi: 10.1088/1758-5090/ab9490
               Chem Int Ed. 2018;57(26):7709-7713.
               doi: 10.1002/anie.201801001                     123. Zhao Y, Xing Y, Wang M, et al. Supramolecular hydrogel
                                                                  based on an osteogenic  growth peptide promotes  bone
            112. Diaferia C, Netti F, Ghosh M, et al. Bi-functional peptide-  defect repair. ACS Omega. 2022;7(13):11395-11404.
               based 3D hydrogel-scaffolds.  Soft Matter. 2020;16(30):      doi: 10.1021/acsomega.2c00501
               7006-7017.                                      124. Yan  M,  Lewis  P,  Shah  R.  Tailoring  nanostructure  and
               doi: 10.1039/D0SM00825G
                                                                  bioactivity of 3D-printable hydrogels with self-assemble
            113. Dorishetty P, Dutta NK, Choudhury NR. Bioprintable tough   peptides amphiphile (PA) for promoting bile duct formation.
               hydrogels for tissue engineering applications.  Adv  Colloid   Biofabrication. 2018;10(3):035010.
               Interface Sci. 2020;281:102163.                    doi: 10.1088/1758-5090/aac902



            Volume 10 Issue 3 (2024)                        34                                doi: 10.36922/ijb.3223
   37   38   39   40   41   42   43   44   45   46   47