Page 39 - IJB-10-3
P. 39

International Journal of Bioprinting                                   Supramolecular hydrogels as bioinks




               Rev. 2012;64(12):1129-1141.                        2020;5(4):808-818.
               doi: 10.1016/j.addr.2012.04.008                    doi: 10.1016/j.bioactmat.2020.06.001
            36.  Luo ZL,  Zhang  SG. Designer nanomaterials  using chiral   48.  Gao F, Xu Z, Liang Q, et al. Osteochondral regeneration with
               self-assembling peptide systems and their emerging benefit   3D‐printed biodegradable high‐strength supramolecular
               for society. Chem Soc Rev. 2012;41(13):4736-4754.   polymer reinforced‐gelatin hydrogel scaffolds.  Adv Sci.
               doi: 10.1039/c2cs15360b                            2019;6(15):1900867.
                                                                  doi: 10.1002/advs.201900867
            37.  Yang YL, Khoe U, Wang XM, Horii A, Yokoi H, Zhang SG.
               Designer self-assembling peptide nanomaterials.  Nano   49.  Godoy-Gallardo M, Merino-Gómez M, Mateos-Timoneda
               Today. 2009;4(2):193-210.                          MA, Eckhard U, Gil FJ, Perez RA. Advanced binary
               doi: 10.1016/j.nantod.2009.02.009                  guanosine and guanosine 5’-monophosphate cell-laden
                                                                  hydrogels for soft tissue reconstruction by 3D bioprinting.
            38.  Shi L, Ding P, Wang Y, Zhang Y, Ossipov D, Hilborn J.
               Self‐healing polymeric hydrogel formed by metal–ligand   ACS Appl Mater Interfaces. 2023;15(25):29729-29742.
               coordination assembly: design, fabrication, and biomedical      doi: 10.1021/acsami.2c23277
               applications. Macromol Rapid Commun. 2019;40(7):1800837.   50.  Yang J, Fatima K, Zhou X, He C. Meticulously engineered
               doi: 10.1002/marc.201800837                        three-dimensional-printed scaffold with microarchitecture
                                                                  and  controlled  peptide  release  for  enhanced  bone
            39.  Gopinathan J, Noh I. Recent trends in bioinks for 3D
               printing. Biomater Res. 2018;22(1):11.             regeneration. Biomater Trans. 2024;5(1):69.
               doi: 10.1186/s40824-018-0122-1                     doi: 10.12336/biomatertransl.2024.01.007
                                                               51.  Li X, Jian H, Han Q, et al. Three-dimensional (3D) bioprinting
            40.  Lee SC, Gillispie G, Prim P, Lee SJ. Physical and chemical
               factors influencing the printability of hydrogel-based   of medium toughened dipeptide hydrogel scaffolds with
               extrusion bioinks. Chem Rev. 2020;120(19):10834-10886.   Hofmeister effect. J Colloid Interface Sci. 2023;639:1-6.
               doi: 10.1021/acs.chemrev.0c00015                   doi: 10.1016/j.jcis.2023.02.033
                                                               52.  Liu X, Song S, Chen Z, et al. Release of O-GlcNAc transferase
            41.  Li H, Wang H, Zhang D, Xu Z, Liu W. A highly tough and
               stiff supramolecular polymer double network hydrogel.   inhibitor promotes neuronal differentiation of neural stem
               Polymer. 2018;153:193-200.                         cells in 3D bioprinted supramolecular hydrogel scaffold for
               doi: 10.1016/j.polymer.2018.08.029                 spinal cord injury repair. Acta Biomater. 2022;151:148-162.
                                                                  doi: 10.1016/j.actbio.2022.08.031
            42.  Wang Z, Ren Y, Zhu Y, et al. A rapidly self‐healing host–
               guest  supramolecular  hydrogel  with  high  mechanical   53.  Shim J-H, Jang K-M, Hahn SK, et al. Three-dimensional
               strength and excellent biocompatibility. Angew Chem Int Ed.   bioprinting of multilayered constructs containing human
               2018;57(29):9008-9012.                             mesenchymal stromal cells for osteochondral tissue
               doi: 10.1002/anie.201804400                        regeneration in the rabbit knee joint.  Biofabrication.
                                                                  2016;8(1):014102.
            43.  Wu Q, Wei J, Xu B, et al. A robust, highly stretchable      doi: 10.1088/1758-5090/8/1/014102
               supramolecular  polymer  conductive  hydrogel  with  self-
               healability and thermo-processability. Sci Rep. 2017;7(1):1-11.   54.  Chen  H,  Hou  S,  Ma H,  Li  X, Tan  Y. Controlled gelation
               doi: 10.1002/anie.201804400                        kinetics  of  cucurbit[7]uril-adamantane  crosslinked
                                                                  supramolecular hydrogels with competing guest molecules.
            44.  Zhu S, Wang J, Yan H, et al. An injectable supramolecular   Sci Rep. 2016;6(1):20722.
               self-healing  bio-hydrogel  with  high  stretchability,     doi: 10.1038/srep20722
               extensibility and ductility, and a high swelling ratio. J Mater
               Chem B. 2017;5(34):7021-7034.                   55.  Gao W, Chao H, Zheng Y-C, et al. Ionic carbazole-based
               doi: 10.1039/C7TB01183K                            water-soluble two-photon photoinitiator and the fabrication
                                                                  of biocompatible 3D hydrogel scaffold.  ACS Appl Mater
            45.  Lorson T, Jaksch S, Lübtow MM, et al. A thermogelling   Interf. 2021;13(24):27796-27805.
               supramolecular hydrogel with sponge-like morphology as      doi: 10.1021/acsami.1c02227
               a  cytocompatible  bioink.  Biomacromolecules.  2017;18(7):
               2161-2171.                                      56.  Madl AC, Madl CM, Myung D. Injectable cucurbit [8]
               doi: 10.1021/acs.biomac.7b00481                    uril-based supramolecular gelatin hydrogels for cell
                                                                  encapsulation. ACS Macro Lett. 2020;9(4):619-626.
            46.  Li L, Tian X, Yu X, Dong S. Effects of acute and chronic      doi: 10.1021/acsmacrolett.0c00184
               heavy metal (Cu, Cd, and Zn) exposure on sea cucumbers
               (Apostichopus japonicus). Biomed Res Int. 2016;2016:4532697.   57.  Zou H, Liu J, Li Y, Li X, Wang X. Cucurbit [8] uril‐
               doi: 10.1155/2016/4532697                          based  polymers  and  polymer  materials.  Small.
                                                                  2018;14(46):1802234.
            47.  Hu T, Cui X, Zhu M, et al. 3D-printable supramolecular      doi: 10.1002/smll.201802234
               hydrogels with shear-thinning property: fabricating
               strength tunable bioink via dual crosslinking. Bioact Mater.   58.  Liu YH, Zhang YM, Yu HJ, Liu Y. Cucurbituril‐


            Volume 10 Issue 3 (2024)                        31                                doi: 10.36922/ijb.3223
   34   35   36   37   38   39   40   41   42   43   44