Page 39 - IJB-10-3
P. 39
International Journal of Bioprinting Supramolecular hydrogels as bioinks
Rev. 2012;64(12):1129-1141. 2020;5(4):808-818.
doi: 10.1016/j.addr.2012.04.008 doi: 10.1016/j.bioactmat.2020.06.001
36. Luo ZL, Zhang SG. Designer nanomaterials using chiral 48. Gao F, Xu Z, Liang Q, et al. Osteochondral regeneration with
self-assembling peptide systems and their emerging benefit 3D‐printed biodegradable high‐strength supramolecular
for society. Chem Soc Rev. 2012;41(13):4736-4754. polymer reinforced‐gelatin hydrogel scaffolds. Adv Sci.
doi: 10.1039/c2cs15360b 2019;6(15):1900867.
doi: 10.1002/advs.201900867
37. Yang YL, Khoe U, Wang XM, Horii A, Yokoi H, Zhang SG.
Designer self-assembling peptide nanomaterials. Nano 49. Godoy-Gallardo M, Merino-Gómez M, Mateos-Timoneda
Today. 2009;4(2):193-210. MA, Eckhard U, Gil FJ, Perez RA. Advanced binary
doi: 10.1016/j.nantod.2009.02.009 guanosine and guanosine 5’-monophosphate cell-laden
hydrogels for soft tissue reconstruction by 3D bioprinting.
38. Shi L, Ding P, Wang Y, Zhang Y, Ossipov D, Hilborn J.
Self‐healing polymeric hydrogel formed by metal–ligand ACS Appl Mater Interfaces. 2023;15(25):29729-29742.
coordination assembly: design, fabrication, and biomedical doi: 10.1021/acsami.2c23277
applications. Macromol Rapid Commun. 2019;40(7):1800837. 50. Yang J, Fatima K, Zhou X, He C. Meticulously engineered
doi: 10.1002/marc.201800837 three-dimensional-printed scaffold with microarchitecture
and controlled peptide release for enhanced bone
39. Gopinathan J, Noh I. Recent trends in bioinks for 3D
printing. Biomater Res. 2018;22(1):11. regeneration. Biomater Trans. 2024;5(1):69.
doi: 10.1186/s40824-018-0122-1 doi: 10.12336/biomatertransl.2024.01.007
51. Li X, Jian H, Han Q, et al. Three-dimensional (3D) bioprinting
40. Lee SC, Gillispie G, Prim P, Lee SJ. Physical and chemical
factors influencing the printability of hydrogel-based of medium toughened dipeptide hydrogel scaffolds with
extrusion bioinks. Chem Rev. 2020;120(19):10834-10886. Hofmeister effect. J Colloid Interface Sci. 2023;639:1-6.
doi: 10.1021/acs.chemrev.0c00015 doi: 10.1016/j.jcis.2023.02.033
52. Liu X, Song S, Chen Z, et al. Release of O-GlcNAc transferase
41. Li H, Wang H, Zhang D, Xu Z, Liu W. A highly tough and
stiff supramolecular polymer double network hydrogel. inhibitor promotes neuronal differentiation of neural stem
Polymer. 2018;153:193-200. cells in 3D bioprinted supramolecular hydrogel scaffold for
doi: 10.1016/j.polymer.2018.08.029 spinal cord injury repair. Acta Biomater. 2022;151:148-162.
doi: 10.1016/j.actbio.2022.08.031
42. Wang Z, Ren Y, Zhu Y, et al. A rapidly self‐healing host–
guest supramolecular hydrogel with high mechanical 53. Shim J-H, Jang K-M, Hahn SK, et al. Three-dimensional
strength and excellent biocompatibility. Angew Chem Int Ed. bioprinting of multilayered constructs containing human
2018;57(29):9008-9012. mesenchymal stromal cells for osteochondral tissue
doi: 10.1002/anie.201804400 regeneration in the rabbit knee joint. Biofabrication.
2016;8(1):014102.
43. Wu Q, Wei J, Xu B, et al. A robust, highly stretchable doi: 10.1088/1758-5090/8/1/014102
supramolecular polymer conductive hydrogel with self-
healability and thermo-processability. Sci Rep. 2017;7(1):1-11. 54. Chen H, Hou S, Ma H, Li X, Tan Y. Controlled gelation
doi: 10.1002/anie.201804400 kinetics of cucurbit[7]uril-adamantane crosslinked
supramolecular hydrogels with competing guest molecules.
44. Zhu S, Wang J, Yan H, et al. An injectable supramolecular Sci Rep. 2016;6(1):20722.
self-healing bio-hydrogel with high stretchability, doi: 10.1038/srep20722
extensibility and ductility, and a high swelling ratio. J Mater
Chem B. 2017;5(34):7021-7034. 55. Gao W, Chao H, Zheng Y-C, et al. Ionic carbazole-based
doi: 10.1039/C7TB01183K water-soluble two-photon photoinitiator and the fabrication
of biocompatible 3D hydrogel scaffold. ACS Appl Mater
45. Lorson T, Jaksch S, Lübtow MM, et al. A thermogelling Interf. 2021;13(24):27796-27805.
supramolecular hydrogel with sponge-like morphology as doi: 10.1021/acsami.1c02227
a cytocompatible bioink. Biomacromolecules. 2017;18(7):
2161-2171. 56. Madl AC, Madl CM, Myung D. Injectable cucurbit [8]
doi: 10.1021/acs.biomac.7b00481 uril-based supramolecular gelatin hydrogels for cell
encapsulation. ACS Macro Lett. 2020;9(4):619-626.
46. Li L, Tian X, Yu X, Dong S. Effects of acute and chronic doi: 10.1021/acsmacrolett.0c00184
heavy metal (Cu, Cd, and Zn) exposure on sea cucumbers
(Apostichopus japonicus). Biomed Res Int. 2016;2016:4532697. 57. Zou H, Liu J, Li Y, Li X, Wang X. Cucurbit [8] uril‐
doi: 10.1155/2016/4532697 based polymers and polymer materials. Small.
2018;14(46):1802234.
47. Hu T, Cui X, Zhu M, et al. 3D-printable supramolecular doi: 10.1002/smll.201802234
hydrogels with shear-thinning property: fabricating
strength tunable bioink via dual crosslinking. Bioact Mater. 58. Liu YH, Zhang YM, Yu HJ, Liu Y. Cucurbituril‐
Volume 10 Issue 3 (2024) 31 doi: 10.36922/ijb.3223

