Page 41 - IJB-10-3
P. 41

International Journal of Bioprinting                                   Supramolecular hydrogels as bioinks




               Incorporation of amphiphilic cyclodextrins into liposomes   polyrotaxane‐based self‐healing hydrogels. Chem A Eur J.
               as artificial receptor units.  Langmuir. 2013;29(24):   2020;26(4):913-920.
               7377-7383.                                         doi: 10.1002/chem.201904446
               doi: 10.1021/la3045434
                                                               92.  Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier
            81.  Redondo-Gómez C, Abdouni Y, Becer CR, Mata A.    systems. Chem Rev. 1998;98(5):2045-2076.
               Self-assembling hydrogels based on a complementary      doi: 10.1021/cr970025p
               host–guest peptide amphiphile pair.  Biomacromolecules.   93.  Li  Z,  Yin  H,  Zhang  Z,  Liu  KL,  Li  J.  Supramolecular
               2019;20(6):2276-2285.                              anchoring of DNA polyplexes in cyclodextrin-based
               doi: 10.1021/acsbiomaterials.0c00549
                                                                  polypseudorotaxane hydrogels for sustained gene delivery.
            82.  Redondo-Gómez C, Padilla-Lopategui S, Azevedo HS,   Biomacromolecules. 2012;13(10):3162-3172.
               Mata A. Host–guest-mediated epitope presentation on self-     doi: 10.1021/bm300936x
               assembled peptide amphiphile hydrogels. ACS Biomater Sci   94.  Segredo-Morales E, Martin-Pastor M, Salas A, et al. Mobility
               Eng.  2020;6(9):4870-4880.                         of water and polymer species and rheological properties of
               doi: 10.1021/acsbiomaterials.0c00549
                                                                  supramolecular polypseudorotaxane gels suitable for bone
            83.  Nowak BP, Ravoo BJ. Magneto-and photo-responsive   regeneration. Bioconjug Chem. 2018;29(2):503-516.
               hydrogels from the co-assembly of peptides, cyclodextrins,      doi: 10.1021/acs.bioconjchem.7b00823
               and superparamagnetic nanoparticles.  Farad Disc.   95.  Ohshita N, Motoyama K, Iohara D, et al. Polypseudorotaxane-
               2019;219:220-228.                                  based supramolecular hydrogels consisting of cyclodextrins
               doi: 10.1039/C9FD00012G
                                                                  and Pluronics as stabilizing agents for antibody drugs.
            84.  Wang J, Williamson GS, Yang H. Branched polyrotaxane   Carbohydr Polym. 2021;256:117419.
               hydrogels consisting of alpha-cyclodextrin and low-     doi: 10.1016/j.carbpol.2020.117419
               molecular-weight four-arm polyethylene glycol and the   96.  Jian H, Wang M, Dong Q, et al. Dipeptide self-assembled
               utility of their thixotropic property for controlled  drug   hydrogels with tunable mechanical properties and
               release. Colloids Surf B Biointerfaces. 2018;165:144-149.   degradability for 3D bioprinting.  ACS Appl Materi Inter.
               doi: 10.1016/j.colsurfb.2018.02.032
                                                                  2019;11(50):46419-46426.
            85.  Dai L, Liu K, Wang L, et al. Injectable and thermosensitive      doi: 10.1021/acsami.9b13905
               supramolecular hydrogels by inclusion complexation   97.  Farsheed AC, Thomas AJ, Pogostin BH, Hartgerink JD.
               between binary-drug loaded micelles and α-cyclodextrin.   3D printing of self‐assembling nanofibrous multidomain
               Mater Sci Eng C. 2017;76:966-974.                  peptide hydrogels. Adv Materi. 2023;35(11):2210378.
               doi: 10.1002/adfm.202200710
                                                                  doi: 10.1002/adma.202210378
            86.  Zohreband Z, Adeli M, Zebardasti A. Self-healable and   98.  Chu B, He J-m, Wang Z, et al. Proangiogenic peptide
               flexible supramolecular gelatin/MoS2 hydrogels with   nanofiber hydrogel/3D printed scaffold for dermal
               molecular  recognition properties.  Int J Biol Macromol.   regeneration. Chem Eng J. 2021;424:128146.
               2021;182:2048-2055.                                doi: 10.1016/j.cej.2020.128146
               doi: 10.1016/j.ijbiomac.2021.05.106
                                                               99.  Li Y, Wang F, Cui H. Peptide‐based supramolecular hydrogels
            87.  Singh A, Zhan J, Ye Z, Elisseeff JH. Modular multifunctional   for delivery of biologics.  Bioeng Transl Med. 2016;1(3):
               poly (ethylene glycol) hydrogels for stem cell differentiation.   306-322.
               Adv Funct Mater. 2013;23(5):575-582.               doi: 10.1002/btm2.10041
               doi: 10.1002/adfm.201201902
                                                               100. Jagrosse ML, Agredo P, Abraham BL, Toriki ES, Nilsson BL.
            88.  Aramoto  H,  Osaki  M,  Konishi  S,  et  al.  Redox-responsive   Supramolecular phenylalanine-derived hydrogels for the
               supramolecular polymeric networks having double-   sustained release of functional proteins. ACS Biomater Sci
               threaded inclusion complexes.  Chem Sci. 2020;11(17):   Eng. 2023;9(2):784-796.
               4322-4331.                                         doi: 10.1021/acsbiomaterials.2c01299
               doi: 10.1039/C9SC05589D
                                                               101. Rajbhandary A, Raymond DM, Nilsson BL. Self-assembly,
            89.  Arisaka Y, Tonegawa A, Tamura A, Yui N. Terminally   hydrogelation, and nanotube formation by cation-modified
               cross‐linking polyrotaxane hydrogels applicable for cellular   phenylalanine  derivatives.  Langmuir.  2017;33(23):
               microenvironments. J Appl Polym Sci. 2021;138(3):49706.   5803-5813.
               doi: 10.1002/app.49706
                                                                  doi: 10.1021/acs.langmuir.7b00686
            90.  Arisaka Y, Yui N. Polyrotaxane-based biointerfaces   102. Misra R, Tang Y, Chen Y, et al. Exploiting minimalistic
               with dynamic biomaterial functions.  J Mater Chem B.   backbone  engineered  γ‐phenylalanine  for  the  formation
               2019;7(13):2123-2129.                              of supramolecular co‐polymer. Macromol Rapid Commun.
               doi: 10.1039/C9TB00256A
                                                                  2022;43(19):2200223.
            91.  Cho IS, Ooya T. Cell‐encapsulating hydrogel puzzle:      doi: 10.1002/marc.202200223

            Volume 10 Issue 3 (2024)                        33                                doi: 10.36922/ijb.3223
   36   37   38   39   40   41   42   43   44   45   46