Page 41 - IJB-10-3
P. 41
International Journal of Bioprinting Supramolecular hydrogels as bioinks
Incorporation of amphiphilic cyclodextrins into liposomes polyrotaxane‐based self‐healing hydrogels. Chem A Eur J.
as artificial receptor units. Langmuir. 2013;29(24): 2020;26(4):913-920.
7377-7383. doi: 10.1002/chem.201904446
doi: 10.1021/la3045434
92. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier
81. Redondo-Gómez C, Abdouni Y, Becer CR, Mata A. systems. Chem Rev. 1998;98(5):2045-2076.
Self-assembling hydrogels based on a complementary doi: 10.1021/cr970025p
host–guest peptide amphiphile pair. Biomacromolecules. 93. Li Z, Yin H, Zhang Z, Liu KL, Li J. Supramolecular
2019;20(6):2276-2285. anchoring of DNA polyplexes in cyclodextrin-based
doi: 10.1021/acsbiomaterials.0c00549
polypseudorotaxane hydrogels for sustained gene delivery.
82. Redondo-Gómez C, Padilla-Lopategui S, Azevedo HS, Biomacromolecules. 2012;13(10):3162-3172.
Mata A. Host–guest-mediated epitope presentation on self- doi: 10.1021/bm300936x
assembled peptide amphiphile hydrogels. ACS Biomater Sci 94. Segredo-Morales E, Martin-Pastor M, Salas A, et al. Mobility
Eng. 2020;6(9):4870-4880. of water and polymer species and rheological properties of
doi: 10.1021/acsbiomaterials.0c00549
supramolecular polypseudorotaxane gels suitable for bone
83. Nowak BP, Ravoo BJ. Magneto-and photo-responsive regeneration. Bioconjug Chem. 2018;29(2):503-516.
hydrogels from the co-assembly of peptides, cyclodextrins, doi: 10.1021/acs.bioconjchem.7b00823
and superparamagnetic nanoparticles. Farad Disc. 95. Ohshita N, Motoyama K, Iohara D, et al. Polypseudorotaxane-
2019;219:220-228. based supramolecular hydrogels consisting of cyclodextrins
doi: 10.1039/C9FD00012G
and Pluronics as stabilizing agents for antibody drugs.
84. Wang J, Williamson GS, Yang H. Branched polyrotaxane Carbohydr Polym. 2021;256:117419.
hydrogels consisting of alpha-cyclodextrin and low- doi: 10.1016/j.carbpol.2020.117419
molecular-weight four-arm polyethylene glycol and the 96. Jian H, Wang M, Dong Q, et al. Dipeptide self-assembled
utility of their thixotropic property for controlled drug hydrogels with tunable mechanical properties and
release. Colloids Surf B Biointerfaces. 2018;165:144-149. degradability for 3D bioprinting. ACS Appl Materi Inter.
doi: 10.1016/j.colsurfb.2018.02.032
2019;11(50):46419-46426.
85. Dai L, Liu K, Wang L, et al. Injectable and thermosensitive doi: 10.1021/acsami.9b13905
supramolecular hydrogels by inclusion complexation 97. Farsheed AC, Thomas AJ, Pogostin BH, Hartgerink JD.
between binary-drug loaded micelles and α-cyclodextrin. 3D printing of self‐assembling nanofibrous multidomain
Mater Sci Eng C. 2017;76:966-974. peptide hydrogels. Adv Materi. 2023;35(11):2210378.
doi: 10.1002/adfm.202200710
doi: 10.1002/adma.202210378
86. Zohreband Z, Adeli M, Zebardasti A. Self-healable and 98. Chu B, He J-m, Wang Z, et al. Proangiogenic peptide
flexible supramolecular gelatin/MoS2 hydrogels with nanofiber hydrogel/3D printed scaffold for dermal
molecular recognition properties. Int J Biol Macromol. regeneration. Chem Eng J. 2021;424:128146.
2021;182:2048-2055. doi: 10.1016/j.cej.2020.128146
doi: 10.1016/j.ijbiomac.2021.05.106
99. Li Y, Wang F, Cui H. Peptide‐based supramolecular hydrogels
87. Singh A, Zhan J, Ye Z, Elisseeff JH. Modular multifunctional for delivery of biologics. Bioeng Transl Med. 2016;1(3):
poly (ethylene glycol) hydrogels for stem cell differentiation. 306-322.
Adv Funct Mater. 2013;23(5):575-582. doi: 10.1002/btm2.10041
doi: 10.1002/adfm.201201902
100. Jagrosse ML, Agredo P, Abraham BL, Toriki ES, Nilsson BL.
88. Aramoto H, Osaki M, Konishi S, et al. Redox-responsive Supramolecular phenylalanine-derived hydrogels for the
supramolecular polymeric networks having double- sustained release of functional proteins. ACS Biomater Sci
threaded inclusion complexes. Chem Sci. 2020;11(17): Eng. 2023;9(2):784-796.
4322-4331. doi: 10.1021/acsbiomaterials.2c01299
doi: 10.1039/C9SC05589D
101. Rajbhandary A, Raymond DM, Nilsson BL. Self-assembly,
89. Arisaka Y, Tonegawa A, Tamura A, Yui N. Terminally hydrogelation, and nanotube formation by cation-modified
cross‐linking polyrotaxane hydrogels applicable for cellular phenylalanine derivatives. Langmuir. 2017;33(23):
microenvironments. J Appl Polym Sci. 2021;138(3):49706. 5803-5813.
doi: 10.1002/app.49706
doi: 10.1021/acs.langmuir.7b00686
90. Arisaka Y, Yui N. Polyrotaxane-based biointerfaces 102. Misra R, Tang Y, Chen Y, et al. Exploiting minimalistic
with dynamic biomaterial functions. J Mater Chem B. backbone engineered γ‐phenylalanine for the formation
2019;7(13):2123-2129. of supramolecular co‐polymer. Macromol Rapid Commun.
doi: 10.1039/C9TB00256A
2022;43(19):2200223.
91. Cho IS, Ooya T. Cell‐encapsulating hydrogel puzzle: doi: 10.1002/marc.202200223
Volume 10 Issue 3 (2024) 33 doi: 10.36922/ijb.3223

