Page 415 - IJB-10-3
P. 415
International Journal of Bioprinting In situ thermal monitoring in bioprinting
34. Wang L, Xu ME, Luo L, Zhou Y, Si P. Iterative feedback bio- 43. Gao T, Gillispie GJ, Copus JS, et al. Optimization of gelatin-
printing-derived cell-laden hydrogel scaffolds with optimal alginate composite bioink printability using rheological
geometrical fidelity and cellular controllability. Sci Rep. parameters: a systematic approach. Biofabrication.
2018;8(1):1-13. 2018;10(3):034106.
doi: 10.1038/s41598-018-21274-4 doi: 10.1088/1758-5090/aacdc7
35. Wang L, Xu M, Zhang L, Zhou Q, Luo L. Automated 44. Yaneva A, Shopova D, Bakova D, et al. The progress in
quantitative assessment of three-dimensional bioprinted bioprinting and its potential impact on health-related
hydrogel scaffolds using optical coherence tomography. quality of life. Bioengineering. 2023;10(8):910.
Biomed Opt Express. 2016;7(3):894. doi: 10.3390/BIOENGINEERING10080910
doi: 10.1364/boe.7.000894
45. Moncal KK, Ozbolat V, Datta P, Heo DN, Ozbolat IT.
36. Bonatti AF, Vozzi G, Chua CK, De Maria C. A deep learning Thermally-controlled extrusion-based bioprinting of
approach for error detection and quantification in extrusion- collagen. J Mater Sci Mater Med. 2019;30:55.
based bioprinting. Mater Today Proc. 2022;70:131-135. doi: 10.1007/s10856-019-6258-2
doi: 10.1016/J.MATPR.2022.09.006
46. Santoni S, Sponchioni M, Gugliandolo SG, Colosimo
37. Bonatti AF, Vozzi G, Chua CK, De Maria C. A deep learning BM, Moscatelli D. Preliminary tests on PEG-based
quality control loop of the extrusion-based bioprinting thermoresponsive polymers for the production of 3D
process. Int J Bioprint. 2022;8(4):307-320. bioprinted constructs. Procedia CIRP. 2022;110(C):
doi: 10.18063/IJB.V8I4.620
350-355.
38. Yang S, Chen Q, Wang L, Xu M. In situ defect detection and doi: 10.1016/j.procir.2022.06.062
feedback control with three-dimensional extrusion-based
bioprinter-associated optical coherence tomography. Int J 47. Suntornnond R, An J, Chua CK. Bioprinting of
Bioprint. 2022;9(1):47-62. thermoresponsive hydrogels for next generation
doi: 10.18063/IJB.V9I1.624 tissue engineering: a review. Macromol Mater Eng.
2017;302(1):1600266.
39. Jin Z, Zhang Z, Shao X, Gu GX. Monitoring anomalies in doi: 10.1002/mame.201600266
3D bioprinting with deep neural networks. ACS Biomater
Sci Eng. 2023;9(7):3945-3952. 48. Hsieh FY, Lin HH, Hsu S-H. 3D bioprinting of neural stem
doi: 10.1021/acsbiomaterials.0c01761 cell-laden thermoresponsive biodegradable polyurethane
hydrogel and potential in central nervous system repair.
40. Armstrong AA, Alleyne AG, Wagoner Johnson AJ. 1D and Biomaterials. 2015;71:48-57.
2D error assessment and correction for extrusion-based doi: 10.1016/j.biomaterials.2015.08.028
bioprinting using process sensing and control strategies.
Biofabrication. 2020;12(4):045023. 49. Bradley D, Roth G. Adaptive thresholding using the integral
doi: 10.1088/1758-5090/ABA8EE image. J Graph Tools. 2007;12(2):13-21.
doi: 10.1080/2151237X.2007.10129236
41. Armstrong AA, Norato J, Alleyne AG, Johnson AJW.
Direct process feedback in extrusion-based 3D bioprinting. 50. Dice LR. Measures of the amount of ecologic association
Biofabrication. 2019;12(1):015017. between species. Ecology. 1945;26(3):297-302.
doi: 10.1088/1758-5090/AB4D97 doi: 10.2307/1932409
42. Armstrong AA, Pfeil A, Alleyne AG, Johnson AJW. 51. Caltanissetta F, Dreifus G, Hart AJ, Colosimo BM. In-situ
Process monitoring and control strategies in extrusion- monitoring of material extrusion processes via thermal
based bioprinting to fabricate spatially graded structures. videoimaging with application to big area additive
Bioprinting. 2021;21:e00126. manufacturing (BAAM). Addit Manuf. 2022;58:102995.
doi: 10.1016/J.BPRINT.2020.E00126 doi: 10.1016/J.ADDMA.2022.102995
Volume 10 Issue 3 (2024) 407 doi: 10.36922/ijb.2021

