Page 414 - IJB-10-3
P. 414

International Journal of Bioprinting                                  In situ thermal monitoring in bioprinting




            9.   Moldovan NI, Hibino N, Nakayama K. Principles of   22.   Caltanissetta F, Grasso M, Petrò S, Colosimo BM.
               the kenzan method for robotic cell spheroid-based   Characterization of in-situ measurements based on
               three-dimensional bioprinting.  Tissue Eng Part B Rev.   layerwise imaging in laser powder bed fusion. Addit Manuf.
               2017;23(3):237-244.                                2018;24:183-199.
               doi: 10.1089/ten.teb.2016.0322                     doi: 10.1016/J.ADDMA.2018.09.017
            10.   Zhou X, Wu H, Wen H, Zheng B. Advances in single-cell   23.   Grasso M, Remani A, Dickins A, Colosimo BM, Leach RK.
               printing. Micromachines. 2022;13(1):80.            In-situ  measurement  and monitoring  methods  for  metal
               doi: 10.3390/mi13010080                            powder bed fusion: an updated review.  Meas  Sci  Technol.
            11.   Ramesh S, Harrysson OLA, Rao PK, et al. Extrusion   2021;32(11):112001.
               bioprinting: recent progress, challenges, and future      doi: 10.1088/1361-6501/AC0B6B
               opportunities. Bioprinting. 2021;21:e00116.     24.   Grasso M, Colosimo BM. Process defects and in situ
               doi: 10.1016/j.bprint.2020.e00116                  monitoring methods in metal powder bed fusion: a review.
            12.   Boularaoui S, Al Hussein G, Khan KA, Christoforou N,   Meas Sci Technol. 2017;28(4):044005.
               Stefanini C. An overview of extrusion-based bioprinting      doi: 10.1088/1361-6501/AA5C4F
               with a focus on induced shear stress and its effect on cell   25.   Colosimo BM, Huang Q, Dasgupta T, Tsung F. Opportunities
               viability. Bioprinting. 2020;20:e00093.            and challenges of quality engineering for additive
               doi: 10.1016/J.BPRINT.2020.E00093                  manufacturing. J Qual Technol. 2018;50(3):233-252.
            13.   Saunders RE, Derby B. Inkjet printing biomaterials for tissue      doi: 10.1080/00224065.2018.1487726
               engineering: bioprinting. Int Mater Rev. 2014;59(8):430-448.   26.   AbouelNour Y, Gupta N. Assisted defect detection by in-process
               doi: 10.1179/1743280414Y.0000000040                monitoring of additive manufacturing using optical imaging
            14.   Ng WL, Huang X, Shkolnikov V, Suntornnond R, Yeong   and infrared thermography. Addit Manuf. 2023;67:103483.
               WY. Polyvinylpyrrolidone-based bioink: influence of bioink      doi: 10.1016/J.ADDMA.2023.103483
               properties on printing performance and cell proliferation   27.   Hossain REN, Lewis J, Moore AL. In situ infrared
               during  inkjet-based  bioprinting.  Bio-Des  Manuf.   temperature sensing for real-time defect detection in
               2023;6(6):676-690.                                 additive manufacturing. Addit Manuf. 2021;47:102328.
               doi: 10.1007/S42242-023-00245-3/FIGURES/5          doi: 10.1016/J.ADDMA.2021.102328
            15.   Levato R, Dudaryeva O, Garciamendez-Mijares CE, et  al.   28.   Gugliandolo SG, Margarita A, Santoni S, Moscatelli D,
               Light-based  vat-polymerization  bioprinting.  Nat Rev   Colosimo BM. In-situ monitoring of defects in extrusion-
               Methods Primers. 2023;3(1):1-19.                   based bioprinting processes using visible light imaging.
               doi: 10.1038/s43586-023-00231-0                    Procedia CIRP. 2022;110(C):219-224.
            16.   Gao G, Kim BS, Jang J, Cho D-W. Recent strategies in      doi: 10.1016/J.PROCIR.2022.06.040
               extrusion-based three-dimensional cell printing toward organ   29.   Schmieg B, Gretzinger S, Schuhmann S, Guthausen G,
               biofabrication. ACS Biomater Sci Eng. 2019;5(3):1150-1169.   Hubbuch J. Magnetic resonance imaging as a tool for
               doi: 10.1021/acsbiomaterials.8b00691               quality control in extrusion-based bioprinting. Biotechnol J.
            17.   Antoshin  AA,  Churbanov  SN, Minaev  NV,  et  al.  LIFT-  2022;17(5):2100336.
               bioprinting, is it worth it? Bioprinting. 2019;15(May):e00052.      doi: 10.1002/BIOT.202100336
               doi: 10.1016/j.bprint.2019.e00052               30.   Strauß S, Meutelet R, Radosevic L, Gretzinger S, Hubbuch
            18.   Nuñez Bernal P, Delrot P, Loterie D, et al. Volumetric   J. Image analysis as PAT-tool for use in extrusion-based
               bioprinting of complex living-tissue constructs within   bioprinting. Bioprinting. 2021;21:e00112.
               seconds. Adv Mater. 2019;31(42):1904209.           doi: 10.1016/J.BPRINT.2020.E00112
               doi: 10.1002/ADMA.201904209                     31.   Uzun-Per M, Gillispie GJ, Tavolara TE, et al. Automated
            19.   Kumar H, Kim K. Stereolithography 3D bioprinting.   image analysis methodologies to compute bioink printability.
               Methods Mol Biol. 2020;2140:93-108.                Adv Eng Mater. 2021;23(4):2000900.
               doi: 10.1007/978-1-0716-0520-2_6                   doi: 10.1002/ADEM.202000900
            20.   Sheth R, Balesh ER, Zhang YS, Hirsch JA, Khademhosseini   32.   Bone JM, Childs CM, Menon A, et al. Hierarchical machine
               A, Oklu R. Three-dimensional printing: an enabling   learning for high-fidelity 3D printed biopolymers.  ACS
               technology for IR. J Vasc Interv Radiol. 2016;27(6):859-865.   Biomater Sci Eng. 2020;6(12):7021-7031.
               doi: 10.1016/j.jvir.2016.02.029                    doi:  10.1021/acsbiomaterials.0c00755
            21.   Bouguéon G, Kauss T, Dessane B et al., 2019, Micro-   33.   Sedigh A, DiPiero D, Shine KM, Tomlinson RE. Enhancing
               and nano-formulations for bioprinting and additive   precision in bioprinting utilizing fuzzy systems. Bioprinting.
               manufacturing. Drug Discov Today 24 (1): 163–178.   2022;25:e00190.
               doi: 10.1016/j.drudis.2018.10.013                  doi: 10.1016/J.BPRINT.2021.E00190


            Volume 10 Issue 3 (2024)                       406                                doi: 10.36922/ijb.2021
   409   410   411   412   413   414   415   416   417   418   419