Page 449 - IJB-10-3
P. 449
International Journal of Bioprinting Different modeling of porous scaffolds
51. Xiong Y, Han Z, Qin J, et al. Effects of porosity gradient pattern 59. Zou S, Mu Y, Pan B, et al. Mechanical and biological
on mechanical performance of additive manufactured Ti- properties of enhanced porous scaffolds based on triply
6Al-4V functionally graded porous structure. Mater Des. periodic minimal surfaces. Mater Des. 2022;219.
2021;208. doi: 10.1016/j.matdes.2022.110803
doi: 10.1016/j.matdes.2021.109911
60. Wang S, Shi Z, Liu L, et al. Honeycomb structure is
52. Zhao S, Li S, Hou W, Hao YL, Yang R, Misra RDK. The promising for the repair of human bone defects. Mater Des.
influence of cell morphology on the compressive fatigue 2021;207.
behavior of Ti-6Al-4V meshes fabricated by electron doi: 10.1016/j.matdes.2021.109832
beam melting. J Mech Behav Biomed Mater. 2016;59: 61. Wang H, Su K, Su L, Liang P, Ji P, Wang C. Comparison
251-264. of 3D-printed porous tantalum and titanium scaffolds on
doi: 10.1016/j.jmbbm.2016.01.034 osteointegration and osteogenesis. Mater Sci Eng C Mater
53. Heinl P, Muller L, Korner C, Singer RF, Müller FA. Cellular Biol Appl. 2019;104:109908.
Ti-6Al-4V structures with interconnected macro porosity doi: 10.1016/j.msec.2019.109908
for bone implants fabricated by selective electron beam 62. Li Y, Zhou J, Pavanram P, et al. Additively manufactured
melting. Acta Biomater. 2008;4(5):1536-1544. biodegradable porous magnesium. Acta Biomater.
doi: 10.1016/j.actbio.2008.03.013 2018;67:378-392.
54. Heinl P, Körner C, Singer RF. Selective electron beam doi: 10.1016/j.actbio.2017.12.008
melting of cellular titanium: mechanical properties. Adv Eng 63. Wang Z, Wang C, Li C, et al. Analysis of factors influencing
Mater. 2008;10(9):882-888. bone ingrowth into three-dimensional printed porous
doi: 10.1002/adem.200800137 metal scaffolds: a review, J Alloy Compd. 2017;717:
55. Cheng X, Li S, Murr L, et al. Compression deformation 271-285.
behavior of Ti-6Al-4V alloy with cellular structures doi: 10.1016/j.jallcom.2017.05.079
fabricated by electron beam melting. J Mech Behav Biomed 64. Li Y, Shi Y, Lu Y, et al. Additive manufacturing of vascular
Mater. 2012;16:153-162. stents. Acta Biomater. 2023;167:16-37.
doi: 10.1016/j.jmbbm.2012.10.005 doi: 10.1016/j.actbio.2023.06.014
56. Chen S, Huang J, Pan C, et al. Microstructure and mechanical 65. Zhang Y, Liu J, Wang L, et al. Porous NiTiNb alloys with
properties of open-cell porous Ti-6Al-4V fabricated by superior strength and ductility induced by modulating
selective laser melting. J Alloys Compd. 2017;713:248-254. eutectic microregion. Acta Mater. 2022;239:118295.
doi: 10.1016/j.jallcom.2017.04.190 doi: 10.1016/j.actamat.2022.118295
57. Nauman EA, Fong KE, Keaveny TM. Dependence of 66. Lv Y, Shi Z, Wang B, et al. Design of biomedical gradient
intertrabecular permeability on flow direction and anatomic porous scaffold via a minimal surface dual-unit continuous
site. Ann Biomed Eng. 1999;27:517-524. transition connection strategy. Int J Bioprint. 2024;10(1).
doi: 10.1114/1.195 doi: 10.36922/ijb.1263
58. Zhang X-Y, Yan X-C, Fang G, Liu M. Biomechanical 67. Zhang Y, Wei D, Chen Y, et al. Non-negligible role of
influence of structural variation strategies on functionally gradient porous structure in superelasticity deterioration
graded scaffolds constructed with triply periodic minimal and improvement of NiTi shape memory alloys. J Mater Sci
surface. Addit Manuf. 2020;32. Technol. 2024;186:48-63.
doi: 10.1016/j.addma.2019.101015 doi: 10.1016/j.jmst.2023.10.053
Volume 10 Issue 3 (2024) 441 doi: 10.36922/ijb.2565

