Page 448 - IJB-10-3
P. 448

International Journal of Bioprinting                                  Different modeling of porous scaffolds




            29.  Naghavi SA, Tamaddon M, Marghoub A, et al. Mechanical   40.  McGregor M, Patel S, McLachlin S, Vlasea M. Architectural
               characterisation and numerical modelling of TPMS-based   bone parameters and the relationship to titanium lattice
               gyroid and diamond Ti6Al4V scaffolds for bone implants:   design for powder bed fusion additive manufacturing. Addit
               an integrated approach for translational consideration.   Manuf. 2021;47.
               Bioengineering. 2022;9(10).                        doi: 10.1016/j.addma.2021.102273
               doi: 10.3390/bioengineering9100504              41.  Hara D, Nakashima Y, Sato T, et al. Bone bonding strength
            30.  Lu Y, Cheng L, Yang Z, Li J, Zhu H. Relationship between   of diamond-structured porous titanium-alloy implants
               the morphological, mechanical and permeability properties   manufactured using the electron beam-melting technique.
               of porous bone scaffolds and the underlying microstructure.   Mater Sci Eng C Mater Biol Appl. 2016;59:1047-1052.
               Plos One. 2020;15(9).                              doi: 10.1016/j.msec.2015.11.025
               doi: 10.1371/journal.pone.0238471               42.  Wang S, Shi Z, Liu L, Zhou X, Zhu L, Hao Y. The design
            31.  Guo X, Zheng X, Yang Y, Yang X, Yi Y. Mechanical behavior   of Ti6Al4V primitive surface structure with symmetrical
               of TPMS-based scaffolds: a comparison between minimal   gradient of pore size in biomimetic bone scaffold. Mater Des.
               surfaces and their lattice structures. SN Appl Sci. 2019;1(10).   2020;193.
               doi: 10.1007/s42452-019-1167-z                     doi: 10.1016/j.matdes.2020.108830
            32.  Zhang X, Fang G, Xing L, Liu W, Zhou J. Effect of porosity   43.  Carluccio D, Xu C, Venezuela J,  et al. Additively
               variation strategy on the performance of functionally graded   manufactured iron-manganese for biodegradable porous
               Ti-6Al-4V scaffolds for bone tissue engineering. Mater Des.   load-bearing bone scaffold applications.  Acta  Biomater.
               2018;157:523-538.                                  2020;103:346-360.
               doi: 10.1016/j.matdes.2018.07.064                  doi: 10.1016/j.actbio.2019.12.018
            33.  Pires  T,  Santos  J,  Ruben  RB,  Gouveia  BP,  Castro  APG,   44.  Lv Y, Liu G, Wang B, et al. Pore strategy design of a novel NiTi-
               Fernandes PR. Numerical-experimental analysis of the   Nb biomedical porous scaffold based on a triply periodic
               permeability-porosity relationship in triply periodic   minimal surface. Front Bioeng Biotechnol. 2022;10:910475.
               minimal surfaces scaffolds. J Biomech. 2021;117.      doi: 10.3389/fbioe.2022.910475
               doi: 10.1016/j.jbiomech.2021.110263             45.  Lv Y, Guo J, Zhang Q, Wei G, Yu H. Design of low elastic
                                                                  modulus and high strength TC4 porous scaffolds via
            34.  Santos J, Pires T, Gouveia BP, Castro APG, Fernandes PR.   new variable gradient strategies.  Mater  Lett. 2022;325:
               On the permeability of TPMS scaffolds.  J Mech Behav   132616.
               Biomed Mater. 2020;110.                            doi: 10.1016/j.matlet.2022.132616
               doi: 10.1016/j.jmbbm.2020.103932
                                                               46.  Tan  C,  Zou  J, Li S,  et  al.  Additive  manufacturing  of  bio-
            35.  Zhao S, Hou W, Xu Q, Li SJ, Hao YL, Yang R. Ti-6Al-4V   inspired  multi-scale  hierarchically strengthened lattice
               lattice  structures  fabricated  by  electron  beam  melting  for   structures. Int J Mach Tools Manuf. 2021;167.
               biomedical applications.  Titanium Med Dent Appl. 2018;      doi: 10.1016/j.ijmachtools.2021.103764
               277-301.
               doi: 10.1016/B978-0-12-812456-7.00013-5         47.  Yu G, Li Z, Li S, et al. The select of internal architecture for
                                                                  porous Ti alloy scaffold: a compromise between mechanical
            36.  Yan C, Hao L, Hussein A,  Young P, Raymont D. Advanced   properties and permeability. Mater Des. 2020;192:108754.
               lightweight 316L stainless steel cellular lattice structures      doi: 10.1016/j.matdes.2020.108754
               fabricated  via  selective  laser  melting.  Mater Des.  2014;55:
               533-541.                                        48.  Xiong Y, Gao R, Zhang H, Dong L-L, Li J-T, Li X. Rationally
               doi: 10.1016/j.matdes.2013.10.027                  designed functionally graded porous Ti6Al4V scaffolds with
                                                                  high strength and toughness built via selective laser melting
            37.  Li X, Xiong Y-Z, Zhang H,  Gao R-N. Development of   for load-bearing orthopedic applications.  J Mech Behav
               functionally graded porous titanium/silk fibroin composite   Biomed Mater. 2020;104:103673.
               scaffold for bone repair. Mater Lett. 2021;282.     doi: 10.1016/j.jmbbm.2020.103673
               doi: 10.1016/j.matlet.2020.128670
                                                               49.  Bobbert FSL, Lietaert K, Eftekhari AA,  et al. Additively
            38.  Huo P, Zhao Z, Bai P, et al. Deformation evolution and   manufactured metallic porous biomaterials based on
               fracture mechanism of porous TC4 alloy scaffolds fabricated   minimal surfaces: a unique combination of topological,
               using selective laser melting under uniaxial compression.    mechanical, and mass transport properties. Acta Biomater.
               J Alloys Compd. 2021;861:158529.                   2017;53:572-584.
               doi: 10.1016/j.jallcom.2020.158529                 doi: 10.1016/j.actbio.2017.02.024
            39.  Wang S, Liu L, Li K, Zhu L, Chen J, Hao Y. Pore functionally   50.  Lv Y, Wang B, Liu G, et al. Design of bone-like continuous
               graded Ti6Al4V scaffolds  for bone tissue  engineering   gradient porous scaffold based on triply periodic minimal
               application. Mater Des. 2019;168.                  surfaces. J Mater Res Technol. 2022;21:3650-3665.
               doi: 10.1016/j.matdes.2019.107643                  doi: 10.1016/j.jmrt.2022.10.160


            Volume 10 Issue 3 (2024)                       440                                doi: 10.36922/ijb.2565
   443   444   445   446   447   448   449   450   451   452   453