Page 448 - IJB-10-3
P. 448
International Journal of Bioprinting Different modeling of porous scaffolds
29. Naghavi SA, Tamaddon M, Marghoub A, et al. Mechanical 40. McGregor M, Patel S, McLachlin S, Vlasea M. Architectural
characterisation and numerical modelling of TPMS-based bone parameters and the relationship to titanium lattice
gyroid and diamond Ti6Al4V scaffolds for bone implants: design for powder bed fusion additive manufacturing. Addit
an integrated approach for translational consideration. Manuf. 2021;47.
Bioengineering. 2022;9(10). doi: 10.1016/j.addma.2021.102273
doi: 10.3390/bioengineering9100504 41. Hara D, Nakashima Y, Sato T, et al. Bone bonding strength
30. Lu Y, Cheng L, Yang Z, Li J, Zhu H. Relationship between of diamond-structured porous titanium-alloy implants
the morphological, mechanical and permeability properties manufactured using the electron beam-melting technique.
of porous bone scaffolds and the underlying microstructure. Mater Sci Eng C Mater Biol Appl. 2016;59:1047-1052.
Plos One. 2020;15(9). doi: 10.1016/j.msec.2015.11.025
doi: 10.1371/journal.pone.0238471 42. Wang S, Shi Z, Liu L, Zhou X, Zhu L, Hao Y. The design
31. Guo X, Zheng X, Yang Y, Yang X, Yi Y. Mechanical behavior of Ti6Al4V primitive surface structure with symmetrical
of TPMS-based scaffolds: a comparison between minimal gradient of pore size in biomimetic bone scaffold. Mater Des.
surfaces and their lattice structures. SN Appl Sci. 2019;1(10). 2020;193.
doi: 10.1007/s42452-019-1167-z doi: 10.1016/j.matdes.2020.108830
32. Zhang X, Fang G, Xing L, Liu W, Zhou J. Effect of porosity 43. Carluccio D, Xu C, Venezuela J, et al. Additively
variation strategy on the performance of functionally graded manufactured iron-manganese for biodegradable porous
Ti-6Al-4V scaffolds for bone tissue engineering. Mater Des. load-bearing bone scaffold applications. Acta Biomater.
2018;157:523-538. 2020;103:346-360.
doi: 10.1016/j.matdes.2018.07.064 doi: 10.1016/j.actbio.2019.12.018
33. Pires T, Santos J, Ruben RB, Gouveia BP, Castro APG, 44. Lv Y, Liu G, Wang B, et al. Pore strategy design of a novel NiTi-
Fernandes PR. Numerical-experimental analysis of the Nb biomedical porous scaffold based on a triply periodic
permeability-porosity relationship in triply periodic minimal surface. Front Bioeng Biotechnol. 2022;10:910475.
minimal surfaces scaffolds. J Biomech. 2021;117. doi: 10.3389/fbioe.2022.910475
doi: 10.1016/j.jbiomech.2021.110263 45. Lv Y, Guo J, Zhang Q, Wei G, Yu H. Design of low elastic
modulus and high strength TC4 porous scaffolds via
34. Santos J, Pires T, Gouveia BP, Castro APG, Fernandes PR. new variable gradient strategies. Mater Lett. 2022;325:
On the permeability of TPMS scaffolds. J Mech Behav 132616.
Biomed Mater. 2020;110. doi: 10.1016/j.matlet.2022.132616
doi: 10.1016/j.jmbbm.2020.103932
46. Tan C, Zou J, Li S, et al. Additive manufacturing of bio-
35. Zhao S, Hou W, Xu Q, Li SJ, Hao YL, Yang R. Ti-6Al-4V inspired multi-scale hierarchically strengthened lattice
lattice structures fabricated by electron beam melting for structures. Int J Mach Tools Manuf. 2021;167.
biomedical applications. Titanium Med Dent Appl. 2018; doi: 10.1016/j.ijmachtools.2021.103764
277-301.
doi: 10.1016/B978-0-12-812456-7.00013-5 47. Yu G, Li Z, Li S, et al. The select of internal architecture for
porous Ti alloy scaffold: a compromise between mechanical
36. Yan C, Hao L, Hussein A, Young P, Raymont D. Advanced properties and permeability. Mater Des. 2020;192:108754.
lightweight 316L stainless steel cellular lattice structures doi: 10.1016/j.matdes.2020.108754
fabricated via selective laser melting. Mater Des. 2014;55:
533-541. 48. Xiong Y, Gao R, Zhang H, Dong L-L, Li J-T, Li X. Rationally
doi: 10.1016/j.matdes.2013.10.027 designed functionally graded porous Ti6Al4V scaffolds with
high strength and toughness built via selective laser melting
37. Li X, Xiong Y-Z, Zhang H, Gao R-N. Development of for load-bearing orthopedic applications. J Mech Behav
functionally graded porous titanium/silk fibroin composite Biomed Mater. 2020;104:103673.
scaffold for bone repair. Mater Lett. 2021;282. doi: 10.1016/j.jmbbm.2020.103673
doi: 10.1016/j.matlet.2020.128670
49. Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively
38. Huo P, Zhao Z, Bai P, et al. Deformation evolution and manufactured metallic porous biomaterials based on
fracture mechanism of porous TC4 alloy scaffolds fabricated minimal surfaces: a unique combination of topological,
using selective laser melting under uniaxial compression. mechanical, and mass transport properties. Acta Biomater.
J Alloys Compd. 2021;861:158529. 2017;53:572-584.
doi: 10.1016/j.jallcom.2020.158529 doi: 10.1016/j.actbio.2017.02.024
39. Wang S, Liu L, Li K, Zhu L, Chen J, Hao Y. Pore functionally 50. Lv Y, Wang B, Liu G, et al. Design of bone-like continuous
graded Ti6Al4V scaffolds for bone tissue engineering gradient porous scaffold based on triply periodic minimal
application. Mater Des. 2019;168. surfaces. J Mater Res Technol. 2022;21:3650-3665.
doi: 10.1016/j.matdes.2019.107643 doi: 10.1016/j.jmrt.2022.10.160
Volume 10 Issue 3 (2024) 440 doi: 10.36922/ijb.2565

