Page 447 - IJB-10-3
P. 447

International Journal of Bioprinting                                  Different modeling of porous scaffolds




            8.   Yang G, Xu B, Lei X, et al. Preparation of porous titanium   19.  Yang L, Han C, Wu H, et al. Insights into unit cell size effect
               by direct in-situ reduction of titanium sesquioxide. Vacuum.   on mechanical responses and energy absorption capability
               2018;157:453-457.                                  of titanium graded porous structures manufactured by
               doi: 10.1016/j.vacuum.2018.09.021                  laser powder bed fusion,  J Mech Behav Biomed Mater.
                                                                  2020;109:103843.
            9.   Wang L, Xie L, Zhang L, et al. Microstructure evolution and
               superelasticity of layer-like NiTiNb porous metal prepared      doi: 10.1016/j.jmbbm.2020.103843
               by eutectic reaction. Acta Mater. 2018;143:214-226.  20.  Kaur I, Singh P. Flow and thermal transport characteristics
               doi: 10.1016/j.actamat.2017.10.021                 of triply-periodic minimal surface (TPMS)-based gyroid
            10.  Biasetto L, de Moraes EG, Colombo P, Bonollo F. Ovalbumin   and Schwarz-P cellular materials. Numer Heat Transfer, Part
               as foaming agent for Ti6Al4V foams produced by gelcasting.   A. 2021;79(8):553-569.
               J Alloys Compd. 2016;687:839-844.                  doi: 10.1080/10407782.2021.1872260
               doi: 10.1016/j.jallcom.2016.06.218              21.  Wu G, More KL, Johnston CM,  Zelenay P. High-
            11.  Ma HY, Wang JC, Qin P,  et al. Advances in additively   performance electrocatalysts for oxygen reduction derived
               manufactured titanium alloys by powder bed fusion   from polyaniline, iron, and cobalt. Science. 2011;332(6028):
               and  directed  energy  deposition:  microstructure,  defects,   443-447.
               and mechanical behavior. J Mech Behav Biomed Mater.      doi: 10.1126/science.1200832
               2024;183:32-62.                                 22.  Yadroitsev I, Shishkovsky I, Bertrand P,  Smurov I.
               doi: 10.1016/j.jmst.2023.11.003                    Manufacturing of fine-structured 3D porous filter elements
            12.  Hafeez N, Liu J, Wang L, et al. Superelastic response of low-  by  selective  laser  melting.  Appl  Surf  Sci.  2009;255(10):
               modulus porous beta-type Ti-35Nb-2Ta-3Zr alloy fabricated   5523-5527.
               by laser powder bed fusion. Addit Manuf. 2020;34.     doi: 10.1016/j.apsusc.2008.07.154
               doi: 10.1016/j.addma.2020.101264                23.  Attarilar S, Ebrahimi M, Djavanroodi F, Fu Y, Wang L, Yang
            13.  Hafeez N, Wei D, Xie L, et al. Evolution of microstructural   J. 3D printing technologies in metallic implants: a thematic
               complex transitions in low-modulus β-type Ti-35Nb-2Ta-  review on the techniques and procedures.  Int J Bioprint.
               3Zr alloy manufactured by laser powder bed fusion. Addit   2021;7(1).
               Manuf. 2021;48.                                    doi: 10.18063/ijb.v7i1.306
               doi: 10.1016/j.addma.2021.102376                24.  Yoo D. Computer-aided porous scaffold design for tissue
            14.  Zhang T, Wei D, Lu E, et al. Microstructure evolution and   engineering using triply periodic minimal surfaces.  Int  J
               deformation mechanism of α+β dual-phase Ti-xNb-yTa-  Precis Eng Manuf. 2011;12(1):61-71.
               2Zr alloys with high performance.  J Mater Sci Technol.      doi: 10.1007/s12541-011-0008-9
               2022;131:68-81.                                 25.  Ma S, Tang Q, Han X, et al. Manufacturability, mechanical
               doi: 10.1016/j.jmst.2022.04.052                    properties, mass-transport properties and biocompatibility
            15.  Lv Y, Wang B, Liu G,  et al. Metal material, properties   of triply periodic minimal surface (TPMS) porous
               and design methods of porous biomedical scaffolds for   scaffolds  fabricated  by selective  laser  melting.  Mater Des.
               additive manufacturing: a review. Front Bioeng Biotechnol.   2020;195.
               2021;9:641130.                                     doi: 10.1016/j.matdes.2020.109034
               doi: 10.3389/fbioe.2021.641130                  26.  Ma S, Tang Q, Feng Q, Song J, Han X, Guo F. Mechanical
            16.  Guo W, Yang Y, Liu C, et al. 3D printed TPMS structural   behaviours and  mass  transport properties  of  bone-
               PLA/GO scaffold: process parameter optimization, porous   mimicking scaffolds consisted of gyroid structures
               structure, mechanical and biological properties.  J Mech   manufactured using selective laser melting.  J Mech Behav
               Behav Biomed Mater. 2023;142.                      Biomed Mater. 2019;93:158-169.
               doi: 10.1016/j.jmbbm.2023.105848                   doi: 10.1016/j.jmbbm.2019.01.023
            17.  Belda R, Megías R, Marco M, Vercher-Martínez A,   27.  Yang N, Quan Z, Zhang D, Tian Y. Multi-morphology
               Giner  E.  Numerical  analysis  of  the  influence  of  triply   transition hybridization CAD design of minimal surface
               periodic minimal surface structures morphometry on the   porous structures for use in tissue engineering.  Comput-
               mechanical  response.  Comput Methods Programs Biomed.   Aided Des. 2014;56:11-21.
               2023;230:107342.                                   doi: 10.1016/j.cad.2014.06.006
               doi: 10.1016/j.cmpb.2023.107342
                                                               28.  Aliyu A, Poungsiri K, Shinjo J, Panwisawas  C, et al.
            18.  Yang L, Li Y, Wu S, et al. Tailorable and predictable   Additive manufacturing of tantalum scaffolds:Processing,
               mechanical responses of additive manufactured TPMS   microstructure and process-induced defects, Int J Refract
               lattices with graded structures. Mat Sci Eng A. 2022;843.  Met H. 2023;112:106132.
               doi: 10.1016/j.msea.2022.143109                    doi: 10.1016/j.ijrmhm.2023.106132



            Volume 10 Issue 3 (2024)                       439                                doi: 10.36922/ijb.2565
   442   443   444   445   446   447   448   449   450   451   452