Page 447 - IJB-10-3
P. 447
International Journal of Bioprinting Different modeling of porous scaffolds
8. Yang G, Xu B, Lei X, et al. Preparation of porous titanium 19. Yang L, Han C, Wu H, et al. Insights into unit cell size effect
by direct in-situ reduction of titanium sesquioxide. Vacuum. on mechanical responses and energy absorption capability
2018;157:453-457. of titanium graded porous structures manufactured by
doi: 10.1016/j.vacuum.2018.09.021 laser powder bed fusion, J Mech Behav Biomed Mater.
2020;109:103843.
9. Wang L, Xie L, Zhang L, et al. Microstructure evolution and
superelasticity of layer-like NiTiNb porous metal prepared doi: 10.1016/j.jmbbm.2020.103843
by eutectic reaction. Acta Mater. 2018;143:214-226. 20. Kaur I, Singh P. Flow and thermal transport characteristics
doi: 10.1016/j.actamat.2017.10.021 of triply-periodic minimal surface (TPMS)-based gyroid
10. Biasetto L, de Moraes EG, Colombo P, Bonollo F. Ovalbumin and Schwarz-P cellular materials. Numer Heat Transfer, Part
as foaming agent for Ti6Al4V foams produced by gelcasting. A. 2021;79(8):553-569.
J Alloys Compd. 2016;687:839-844. doi: 10.1080/10407782.2021.1872260
doi: 10.1016/j.jallcom.2016.06.218 21. Wu G, More KL, Johnston CM, Zelenay P. High-
11. Ma HY, Wang JC, Qin P, et al. Advances in additively performance electrocatalysts for oxygen reduction derived
manufactured titanium alloys by powder bed fusion from polyaniline, iron, and cobalt. Science. 2011;332(6028):
and directed energy deposition: microstructure, defects, 443-447.
and mechanical behavior. J Mech Behav Biomed Mater. doi: 10.1126/science.1200832
2024;183:32-62. 22. Yadroitsev I, Shishkovsky I, Bertrand P, Smurov I.
doi: 10.1016/j.jmst.2023.11.003 Manufacturing of fine-structured 3D porous filter elements
12. Hafeez N, Liu J, Wang L, et al. Superelastic response of low- by selective laser melting. Appl Surf Sci. 2009;255(10):
modulus porous beta-type Ti-35Nb-2Ta-3Zr alloy fabricated 5523-5527.
by laser powder bed fusion. Addit Manuf. 2020;34. doi: 10.1016/j.apsusc.2008.07.154
doi: 10.1016/j.addma.2020.101264 23. Attarilar S, Ebrahimi M, Djavanroodi F, Fu Y, Wang L, Yang
13. Hafeez N, Wei D, Xie L, et al. Evolution of microstructural J. 3D printing technologies in metallic implants: a thematic
complex transitions in low-modulus β-type Ti-35Nb-2Ta- review on the techniques and procedures. Int J Bioprint.
3Zr alloy manufactured by laser powder bed fusion. Addit 2021;7(1).
Manuf. 2021;48. doi: 10.18063/ijb.v7i1.306
doi: 10.1016/j.addma.2021.102376 24. Yoo D. Computer-aided porous scaffold design for tissue
14. Zhang T, Wei D, Lu E, et al. Microstructure evolution and engineering using triply periodic minimal surfaces. Int J
deformation mechanism of α+β dual-phase Ti-xNb-yTa- Precis Eng Manuf. 2011;12(1):61-71.
2Zr alloys with high performance. J Mater Sci Technol. doi: 10.1007/s12541-011-0008-9
2022;131:68-81. 25. Ma S, Tang Q, Han X, et al. Manufacturability, mechanical
doi: 10.1016/j.jmst.2022.04.052 properties, mass-transport properties and biocompatibility
15. Lv Y, Wang B, Liu G, et al. Metal material, properties of triply periodic minimal surface (TPMS) porous
and design methods of porous biomedical scaffolds for scaffolds fabricated by selective laser melting. Mater Des.
additive manufacturing: a review. Front Bioeng Biotechnol. 2020;195.
2021;9:641130. doi: 10.1016/j.matdes.2020.109034
doi: 10.3389/fbioe.2021.641130 26. Ma S, Tang Q, Feng Q, Song J, Han X, Guo F. Mechanical
16. Guo W, Yang Y, Liu C, et al. 3D printed TPMS structural behaviours and mass transport properties of bone-
PLA/GO scaffold: process parameter optimization, porous mimicking scaffolds consisted of gyroid structures
structure, mechanical and biological properties. J Mech manufactured using selective laser melting. J Mech Behav
Behav Biomed Mater. 2023;142. Biomed Mater. 2019;93:158-169.
doi: 10.1016/j.jmbbm.2023.105848 doi: 10.1016/j.jmbbm.2019.01.023
17. Belda R, Megías R, Marco M, Vercher-Martínez A, 27. Yang N, Quan Z, Zhang D, Tian Y. Multi-morphology
Giner E. Numerical analysis of the influence of triply transition hybridization CAD design of minimal surface
periodic minimal surface structures morphometry on the porous structures for use in tissue engineering. Comput-
mechanical response. Comput Methods Programs Biomed. Aided Des. 2014;56:11-21.
2023;230:107342. doi: 10.1016/j.cad.2014.06.006
doi: 10.1016/j.cmpb.2023.107342
28. Aliyu A, Poungsiri K, Shinjo J, Panwisawas C, et al.
18. Yang L, Li Y, Wu S, et al. Tailorable and predictable Additive manufacturing of tantalum scaffolds:Processing,
mechanical responses of additive manufactured TPMS microstructure and process-induced defects, Int J Refract
lattices with graded structures. Mat Sci Eng A. 2022;843. Met H. 2023;112:106132.
doi: 10.1016/j.msea.2022.143109 doi: 10.1016/j.ijrmhm.2023.106132
Volume 10 Issue 3 (2024) 439 doi: 10.36922/ijb.2565

