Page 474 - IJB-10-3
P. 474

International Journal of Bioprinting                                 Biomimetic scaffolds for tendon healing




            47.  Thompson  RL,  Sica  LUR,  de  Souza  Mendes  PR.  The  yield   60.  Rolnick KI, Choe JA, Leiferman EM, et al. Periostin
               stress tensor. J Non Newtonian Fluid Mech. 2018;261:211-219.  modulates extracellular matrix behavior in tendons. Matrix
               doi: 10.1016/j.jnnfm.2018.09.003                   Biol Plus. 2022;16:100124.
                                                                  doi: 10.1016/j.mbplus.2022.100124
            48.  Mezger TG.  The Rheology Handbook. 4th ed. Hanover,
               Germany: Vincentz Network; 2014.                61.  Luo T, Tan B, Zhu L, Wang Y, Liao J. A review on the design
                                                                  of hydrogels with different stiffness and their effects on
            49.  Mortimer S, Ryan AJ, Stanford JL. Rheological behavior and
               gel-point determination for a model lewis acid-initiated chain   tissue repair. Front Bioeng Biotechnol. 2022;10:817391.
               growth epoxy resin. Macromolecules. 2001;34(9):2973-2980.     doi: 10.3389/fbioe.2022.817391
               doi: 10.1021/ma001835x                          62.  Abalymov A, Parakhonskiy B, Skirtach AG. Polymer- and
                                                                  hybrid-based biomaterials for interstitial, connective,
            50.  Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as
               biomaterials. Macromol Biosci. 2006;6(8):623-633.  vascular, nerve, visceral and musculoskeletal tissue
               doi: 10.1002/mabi.200600069                        engineering. Polymers. 2020;12(3):620.
                                                                  doi: 10.3390/polym12030620
            51.  Whelihan MF, Kiankhooy A, Brummel-Ziedins K. Thrombin
               generation and fibrin clot formation under hypothermic   63.  Cox TR, Erler JT. Remodeling and homeostasis of the
               conditions: an in vitro evaluation of tissue factor initiated   extracellular matrix: implications for fibrotic diseases and
               whole blood coagulation. J Crit Care. 2014;29(1):24-30.  cancer. Dis Model Mech. 2011;4(2):165-178.
               doi: 10.1016/j.jcrc.2013.10.010                    doi: 10.1242/dmm.004077
                                                               64.  Saha K, Pollock JF, Schaffer DV, Healy KE. Designing
            52.  Tang JD, Caliari SR, Lampe KJ. Temperature-dependent
               complex coacervation of engineered elastin-like polypeptide   synthetic materials to control stem cell phenotype.  Curr
               and hyaluronic acid polyelectrolytes.  Biomacromolecules.   Opin Chem Biol. 2007;11(4):381-387.
               2018;19(10):3925-3935.                             doi: 10.1016/j.cbpa.2007.05.030
               doi: 10.1021/acs.biomac.8b00837                 65.  Hwang NS, Varghese S, Elisseeff J. Controlled differentiation
                                                                  of stem cells. Adv Drug Deliv Rev. 2008;60(2):199-214.
            53.  Boularaoui S, Al Hussein G, Khan KA, Christoforou N,
               Stefanini C. An overview of extrusion-based bioprinting      doi: 10.1016/j.addr.2007.08.036
               with a focus on induced shear stress and its effect on cell   66.  O’Brien FJ. Biomaterials & scaffolds for tissue engineering.
               viability. Bioprinting. 2020;20:e00093.            Mater Today. 2011;14(3):88-95.
               doi: 10.1016/j.bprint.2020.e00093                  doi: 10.1016/S1369-7021(11)70058-X
            54.  Fakhruddin K, Hamzah MSA, Razak SIA. Effects of extrusion   67.  Zhang  X,  Kim  T,  Thauland  TJ,  et  al.  Unraveling  the
               pressure and printing speed of 3D bioprinted construct on   mechanobiology of immune cells.  Curr Opin Biotechnol.
               the fibroblast cells viability.  IOP Conf Ser: Mater Sci Eng.   2020;66:236-245.
               2018;440(1):012042.                                doi: 10.1016/j.copbio.2020.09.004
               doi: 10.1088/1757-899X/440/1/012042
                                                               68.  Breuls RGM, Jiya TU, Smit TH. Scaffold stiffness influences
            55.  Xu H, Liu J, Zhang Z, Xu C. A review on cell damage,   cell behavior: opportunities for skeletal tissue engineering.
               viability, and functionality during 3D bioprinting. Mil Med   Open Orthop J. 2008;2:103-109.
               Res. 2022;9(1):70.                                 doi: 10.2174/1874325000802010103
               doi: 10.1186/s40779-022-00429-5
                                                               69.  Schuurman W, Levett PA, Pot MW, et al. Gelatin-
            56.  Wang J, Wei Y, Zhao S, et al. The analysis of viability for   methacrylamide hydrogels as potential biomaterials for
               mammalian cells treated at different temperatures and its   fabrication of tissue-engineered cartilage constructs.
               application in cell shipment. PLoS One. 2017;12(4):e0176120.  Macromol Biosci. 2013;13(5):551-561.
               doi: 10.1371/journal.pone.0176120                  doi: 10.1002/mabi.201200471
            57.  Murphy CM, O’Brien FJ. Understanding the effect of mean   70.  Zhao X, Lang Q, Yildirimer L, et al. Photocrosslinkable
               pore size on cell activity in collagen-glycosaminoglycan   gelatin hydrogel for epidermal tissue engineering.  Adv
               scaffolds. Cell Adh Migr. 2010;4(3):377-381.       Healthc Mater. 2016;5(1):108-118.
               doi: 10.4161/cam.4.3.11747                         doi: 10.1002/adhm.201500005
            58.  Loh QL, Choong C. Three-dimensional scaffolds for tissue   71.  Luo Q, Song G, Song Y, Xu B, Qin J, Shi Y. Indirect co-culture
               engineering applications: role of porosity and pore size.   with tenocytes promotes proliferation and mRNA expression
               Tissue Eng Part B Rev. 2013;19(6):485-502.         of tendon/ligament related genes in rat bone marrow
               doi: 10.1089/ten.TEB.2012.0437                     mesenchymal stem cells. Cytotechnology. 2009;61(1-2):1-10.
                                                                  doi: 10.1007/s10616-009-9233-9
            59.  Voleti PB, Buckley MR, Soslowsky LJ. Tendon healing: repair
               and regeneration. Annu Rev Biomed Eng. 2012;14(1):47-71.  72.  Güngörmüş C, Kolankaya D. Gene expression of tendon
               doi: 10.1146/annurev-bioeng-071811-150122          collagens and tenocyte markers in long-term monolayer and



            Volume 10 Issue 3 (2024)                       466                                doi: 10.36922/ijb.2632
   469   470   471   472   473   474   475   476   477   478   479