Page 474 - IJB-10-3
P. 474
International Journal of Bioprinting Biomimetic scaffolds for tendon healing
47. Thompson RL, Sica LUR, de Souza Mendes PR. The yield 60. Rolnick KI, Choe JA, Leiferman EM, et al. Periostin
stress tensor. J Non Newtonian Fluid Mech. 2018;261:211-219. modulates extracellular matrix behavior in tendons. Matrix
doi: 10.1016/j.jnnfm.2018.09.003 Biol Plus. 2022;16:100124.
doi: 10.1016/j.mbplus.2022.100124
48. Mezger TG. The Rheology Handbook. 4th ed. Hanover,
Germany: Vincentz Network; 2014. 61. Luo T, Tan B, Zhu L, Wang Y, Liao J. A review on the design
of hydrogels with different stiffness and their effects on
49. Mortimer S, Ryan AJ, Stanford JL. Rheological behavior and
gel-point determination for a model lewis acid-initiated chain tissue repair. Front Bioeng Biotechnol. 2022;10:817391.
growth epoxy resin. Macromolecules. 2001;34(9):2973-2980. doi: 10.3389/fbioe.2022.817391
doi: 10.1021/ma001835x 62. Abalymov A, Parakhonskiy B, Skirtach AG. Polymer- and
hybrid-based biomaterials for interstitial, connective,
50. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as
biomaterials. Macromol Biosci. 2006;6(8):623-633. vascular, nerve, visceral and musculoskeletal tissue
doi: 10.1002/mabi.200600069 engineering. Polymers. 2020;12(3):620.
doi: 10.3390/polym12030620
51. Whelihan MF, Kiankhooy A, Brummel-Ziedins K. Thrombin
generation and fibrin clot formation under hypothermic 63. Cox TR, Erler JT. Remodeling and homeostasis of the
conditions: an in vitro evaluation of tissue factor initiated extracellular matrix: implications for fibrotic diseases and
whole blood coagulation. J Crit Care. 2014;29(1):24-30. cancer. Dis Model Mech. 2011;4(2):165-178.
doi: 10.1016/j.jcrc.2013.10.010 doi: 10.1242/dmm.004077
64. Saha K, Pollock JF, Schaffer DV, Healy KE. Designing
52. Tang JD, Caliari SR, Lampe KJ. Temperature-dependent
complex coacervation of engineered elastin-like polypeptide synthetic materials to control stem cell phenotype. Curr
and hyaluronic acid polyelectrolytes. Biomacromolecules. Opin Chem Biol. 2007;11(4):381-387.
2018;19(10):3925-3935. doi: 10.1016/j.cbpa.2007.05.030
doi: 10.1021/acs.biomac.8b00837 65. Hwang NS, Varghese S, Elisseeff J. Controlled differentiation
of stem cells. Adv Drug Deliv Rev. 2008;60(2):199-214.
53. Boularaoui S, Al Hussein G, Khan KA, Christoforou N,
Stefanini C. An overview of extrusion-based bioprinting doi: 10.1016/j.addr.2007.08.036
with a focus on induced shear stress and its effect on cell 66. O’Brien FJ. Biomaterials & scaffolds for tissue engineering.
viability. Bioprinting. 2020;20:e00093. Mater Today. 2011;14(3):88-95.
doi: 10.1016/j.bprint.2020.e00093 doi: 10.1016/S1369-7021(11)70058-X
54. Fakhruddin K, Hamzah MSA, Razak SIA. Effects of extrusion 67. Zhang X, Kim T, Thauland TJ, et al. Unraveling the
pressure and printing speed of 3D bioprinted construct on mechanobiology of immune cells. Curr Opin Biotechnol.
the fibroblast cells viability. IOP Conf Ser: Mater Sci Eng. 2020;66:236-245.
2018;440(1):012042. doi: 10.1016/j.copbio.2020.09.004
doi: 10.1088/1757-899X/440/1/012042
68. Breuls RGM, Jiya TU, Smit TH. Scaffold stiffness influences
55. Xu H, Liu J, Zhang Z, Xu C. A review on cell damage, cell behavior: opportunities for skeletal tissue engineering.
viability, and functionality during 3D bioprinting. Mil Med Open Orthop J. 2008;2:103-109.
Res. 2022;9(1):70. doi: 10.2174/1874325000802010103
doi: 10.1186/s40779-022-00429-5
69. Schuurman W, Levett PA, Pot MW, et al. Gelatin-
56. Wang J, Wei Y, Zhao S, et al. The analysis of viability for methacrylamide hydrogels as potential biomaterials for
mammalian cells treated at different temperatures and its fabrication of tissue-engineered cartilage constructs.
application in cell shipment. PLoS One. 2017;12(4):e0176120. Macromol Biosci. 2013;13(5):551-561.
doi: 10.1371/journal.pone.0176120 doi: 10.1002/mabi.201200471
57. Murphy CM, O’Brien FJ. Understanding the effect of mean 70. Zhao X, Lang Q, Yildirimer L, et al. Photocrosslinkable
pore size on cell activity in collagen-glycosaminoglycan gelatin hydrogel for epidermal tissue engineering. Adv
scaffolds. Cell Adh Migr. 2010;4(3):377-381. Healthc Mater. 2016;5(1):108-118.
doi: 10.4161/cam.4.3.11747 doi: 10.1002/adhm.201500005
58. Loh QL, Choong C. Three-dimensional scaffolds for tissue 71. Luo Q, Song G, Song Y, Xu B, Qin J, Shi Y. Indirect co-culture
engineering applications: role of porosity and pore size. with tenocytes promotes proliferation and mRNA expression
Tissue Eng Part B Rev. 2013;19(6):485-502. of tendon/ligament related genes in rat bone marrow
doi: 10.1089/ten.TEB.2012.0437 mesenchymal stem cells. Cytotechnology. 2009;61(1-2):1-10.
doi: 10.1007/s10616-009-9233-9
59. Voleti PB, Buckley MR, Soslowsky LJ. Tendon healing: repair
and regeneration. Annu Rev Biomed Eng. 2012;14(1):47-71. 72. Güngörmüş C, Kolankaya D. Gene expression of tendon
doi: 10.1146/annurev-bioeng-071811-150122 collagens and tenocyte markers in long-term monolayer and
Volume 10 Issue 3 (2024) 466 doi: 10.36922/ijb.2632

