Page 106 - IJB-4-1
P. 106

Mehri Behbehani, et al.


                 Mater Sci Eng C Mater Biol Appl, 67: 369–377.  43. Shahriari D, Shibayama M, Lynam D, et al., 2017,
                 http://doi.org/10.1016/j.msec.2016.05.067         Peripheral nerve growth within a hydrogel microchannel
             40. Woodruff M A, Hutmacher D W, 2010, The return of a  scaffold supported by a kink-resistant conduit. J Biomed
                 forgotten polymer-Polycaprolactone in the 21 century.  Mater Res A, 105(12): 3392–3399. http://doi.org/10.1002
                                                   st
                 Prog Polym SCI, 35(10): 1217–1256. http://doi.org/10.  /jbm.a.36186
                 1016/j.progpolymsci.2010.04.002               44. Jiang X, Lim S H, Mao H Q, et al., 2010, Current
             41. Nectow A R, Marra K G, Kaplan D L, 2012, Biomaterials  applications and future perspectives of artificial nerve
                 for the development of peripheral nerve guidance  conduits. Experimental Neurology, 223(1): 86–101.
                 conduits. Tissue Eng Part B Rev, 18(1): 40–50.    http://doi.org/10.1016/j.expneurol.2009.09.009
                 http://doi.org/10.1089/ten.TEB.2011.0240      45. Daly W, Yao L, Zeugolis D, et al., 2012, A biomaterials
             42. Hopkins T M, Little K J, Vennemeyer J J, et al., 2017,  approach to peripheral nerve regeneration: Bridging the
                 Short and long gap peripheral nerve repair with   peripheral nerve gap and enhancing functional recovery. J
                 magnesium metal filaments. J Biomed Mater Res A,  R Soc Interface, 9(67): 202–221. http://doi.org/10.1098/
                 105(11): 3148–3158. http://doi.org/10.1002/jbm.a.36176  rsif.2011.0438



























































             12                         International Journal of Bioprinting (2018)–Volume 4, Issue 1
   101   102   103   104   105   106   107   108   109   110   111