Page 106 - IJB-4-1
P. 106
Mehri Behbehani, et al.
Mater Sci Eng C Mater Biol Appl, 67: 369–377. 43. Shahriari D, Shibayama M, Lynam D, et al., 2017,
http://doi.org/10.1016/j.msec.2016.05.067 Peripheral nerve growth within a hydrogel microchannel
40. Woodruff M A, Hutmacher D W, 2010, The return of a scaffold supported by a kink-resistant conduit. J Biomed
forgotten polymer-Polycaprolactone in the 21 century. Mater Res A, 105(12): 3392–3399. http://doi.org/10.1002
st
Prog Polym SCI, 35(10): 1217–1256. http://doi.org/10. /jbm.a.36186
1016/j.progpolymsci.2010.04.002 44. Jiang X, Lim S H, Mao H Q, et al., 2010, Current
41. Nectow A R, Marra K G, Kaplan D L, 2012, Biomaterials applications and future perspectives of artificial nerve
for the development of peripheral nerve guidance conduits. Experimental Neurology, 223(1): 86–101.
conduits. Tissue Eng Part B Rev, 18(1): 40–50. http://doi.org/10.1016/j.expneurol.2009.09.009
http://doi.org/10.1089/ten.TEB.2011.0240 45. Daly W, Yao L, Zeugolis D, et al., 2012, A biomaterials
42. Hopkins T M, Little K J, Vennemeyer J J, et al., 2017, approach to peripheral nerve regeneration: Bridging the
Short and long gap peripheral nerve repair with peripheral nerve gap and enhancing functional recovery. J
magnesium metal filaments. J Biomed Mater Res A, R Soc Interface, 9(67): 202–221. http://doi.org/10.1098/
105(11): 3148–3158. http://doi.org/10.1002/jbm.a.36176 rsif.2011.0438
12 International Journal of Bioprinting (2018)–Volume 4, Issue 1

