Page 105 - IJB-4-1
P. 105
Pre-clinical evaluation of advanced nerve guide conduits using a novel 3D in vitro testing model
15. Wang X, Hu W, Cao Y, et al., 2005, Dog sciatic nerve Thorac Surg, 70(1): 140–4.
regeneration across a 30-mm defect bridged by a 28. Burg K J, Holder W D, Jr., Culberson C R, et al., 2000,
chitosan/PGA artificial nerve graft. Brain, 128(Pt 8): Comparative study of seeding methods for three-
1897–1910. http://doi.org/10.1093/brain/awh517 dimensional polymeric scaffolds. J Biomed Mater Res,
16. Daly W T, Yao L, Abu-rub M T, et al., 2012, The effect of 52(3): 576.
intraluminal contact mediated guidance signals on axonal 29. Yang T H, Miyoshi H, Ohshima N, 2001, Novel cell
mismatch during peripheral nerve repair. Biomaterials, immobilization method utilizing centrifugal force to
33(28):6660–6671.http://doi.org/10.1016/j.biomaterials.2 achieve high-density hepatocyte culture in porous
012.06.002 scaffold. J Biomed Mater Res, 55(3): 379–86.
17. Pateman C J, Harding A J, Glen A, et al., 2015, Nerve 30. Krames E S, 2015, The dorsal root ganglion in chronic
guides manufactured from photocurable polymers to aid pain and as a target for neuromodulation: A review.
peripheral nerve repair. Biomaterials, 49: 77–89. Neuromodulation, 18(1): 24–32. http://doi.org/10.1111/
http://doi.org/10.1016/j.biomaterials.2015.01.055 ner.12247
18. Daud M F, Pawar K C, Claeyssens F, et al., 2012, An 31. Gaudet A D, Popovich P G, Ramer M S, 2011, Wallerian
aligned 3D neuronal-glial co-culture model for peripheral degeneration: Gaining perspective on inflammatory
nerve studies. Biomaterials, 33(25): 5901–5913. events after peripheral nerve injury. J Neuroinflammation,
http://doi.org/10.1016/j.biomaterials.2012.05.008 8: 110. 10.1186/1742–2094–8–110. http://doi.org/10.1186
19. Edelman D B, Keefer E W, 2005, A cultural renaissance: /1742-2094-8-110
In vitro cell biology embraces three-dimensional context. 32. Bozkurt A, Brook G A, Moellers S, et al., 2007, In vitro
Exp Neurol, 192(1): 1. http://doi.org/10.1016/j.expneurol. assessment of axonal growth using dorsal root ganglia
2004.10.005 explants in a novel three-dimensional collagen matrix.
20. Pampaloni F, Reynaud E G, Stelzer E H, 2007, The third Tissue Eng, 13(12): 297–299. http://doi.org/10.1089/ten.
dimension bridges the gap between cell culture and live 2007.0116
tissue. Nat Rev Mol Cell Biol, 8(10): 839–845. 33. Rangappa N, Romero A, Nelson K D, et al., 2000,
http://doi.org/ 10.1038/nrm2236 Laminin-coated poly (L-lactide) filaments induce robust
21. Ravi M, Paramesh V, Kaviya S R, et al., 2015, 3D cell neurite growth while providing directional orientation. J
culture systems: Advantages and applications. J Cell Biomed Mater Res, 51(4): 625–634.
Physiol, 230(1): 16–26. http://doi.org/10.1002/jcp.24683 34. Huval R M, Miller O H, Curley J L, et al., 2015,
22. Mazzoleni G, Di Lorenzo D, Steimberg N, 2009, Microengineered peripheral nerve-on-a-chip for
Modelling tissues in 3D: The next future of preclinical physiological testing. Lab Chip, 15(10): 22–32.
pharmaco-toxicology and food research?. Genes Nutr, http://doi.org/10.1039/c4lc01513d
4(1): 13–22. http://doi.org/10.1007/s12263–008–0107–0 35. Graham M Land Prescott M J, 2015, The multifactorial
23. Kaplan H M, Mishra P, Kohn J, 2015, The overwhelming role of the 3Rs in shifting the harm-benefit analysis in
use of rat models in nerve regeneration research may animal models of disease. Eur J Pharmacol, 759: 19–29.
compromise designs of nerve guidance conduits for http://doi.org/10.1016/j.ejphar.2015.03.040
humans. J Mater Sci Mater Med, 26(8): 226. 36. Cho D W, Kang H W, 2012, Microstereolithographybased
http://doi.org/10.1007/s10856–015–5558–4 computer-aided manufacturing for tissue engineering.
24. Teixeira F G, Vasconcelos N L, Gomes E D, et al., 2016, Methods Mol Biol, 868: 341–356. http://doi.org/10.1007/
Bioengineered cell culture systems of central nervous 978–1–61779–764–4_21
system injury and disease. Drug Discov Today, 21(9): 37. Kim Y T, Haftel V K, Kumar S, et al., 2008, The role of
1456–1463. http://doi.org/10.1016/j.drudis.2016.04.020 aligned polymer fiber-based constructs in the bridging of
25. Bosi S, Rauti R, Laishram J, et al., 2015, From 2D to 3D: long peripheral nerve gaps. Biomaterials, 29(21):
Novel nanostructured scaffolds to investigate signalling 31–27. http://doi.org/10.1016/j.biomaterials.2008.03.042
in reconstructed neuronal networks. Sci Rep, 5: 9562. 38. Kwak S, Haider A, Gupta K C, et al., 2016, Micro/Nano
http://doi.org/10.1038/srep09562 multilayered scaffolds of PLGA and collagen by
26. Dunn J C, Chan W Y, Cristini V, et al., 2006, Analysis of alternately electrospinning for bone tissue engineering.
cell growth in three-dimensional scaffolds. Tissue Eng, Nanoscale Res Lett, 11(1): 323. http://doi.org/10.1186/s
12(4): 705–716. http://doi.org/10.1089/ten.2006.12.705 11671–016–1532–4
27. Sodian R, Hoerstrup S P, Sperling J S, et al., 2000, Tissue 39. Tan Z, Wang H, Gao X, et al., 2016, Composite vascular
engineering of heart valves: In vitro experiences. Ann grafts with high cell infiltration by co-electrospinning.
International Journal of Bioprinting (2018)–Volume 4, Issue 1 11

