Page 105 - IJB-4-1
P. 105

Pre-clinical evaluation of advanced nerve guide conduits using a novel 3D in vitro testing model


             15. Wang X, Hu W, Cao Y, et al., 2005, Dog sciatic nerve  Thorac Surg, 70(1): 140–4.
                 regeneration across a 30-mm defect bridged by a  28. Burg K J, Holder W D, Jr., Culberson C R, et al., 2000,
                 chitosan/PGA artificial nerve graft. Brain, 128(Pt 8):  Comparative study of seeding methods for three-
                 1897–1910. http://doi.org/10.1093/brain/awh517    dimensional polymeric scaffolds. J Biomed Mater Res,
             16. Daly W T, Yao L, Abu-rub M T, et al., 2012, The effect of  52(3): 576.
                 intraluminal contact mediated guidance signals on axonal  29. Yang T H, Miyoshi H, Ohshima N, 2001, Novel cell
                 mismatch during peripheral nerve repair. Biomaterials,  immobilization method utilizing centrifugal force to
                 33(28):6660–6671.http://doi.org/10.1016/j.biomaterials.2  achieve high-density hepatocyte culture in porous
                 012.06.002                                        scaffold. J Biomed Mater Res, 55(3): 379–86.
             17. Pateman C J, Harding A J, Glen A, et al., 2015, Nerve  30. Krames E S, 2015, The dorsal root ganglion in chronic
                 guides manufactured from photocurable polymers to aid  pain and as a target for neuromodulation: A review.
                 peripheral  nerve  repair. Biomaterials,  49:  77–89.  Neuromodulation, 18(1): 24–32. http://doi.org/10.1111/
                 http://doi.org/10.1016/j.biomaterials.2015.01.055  ner.12247
             18. Daud M F, Pawar K C, Claeyssens F, et al., 2012, An  31. Gaudet A D, Popovich P G, Ramer M S, 2011, Wallerian
                 aligned 3D neuronal-glial co-culture model for peripheral  degeneration: Gaining perspective on inflammatory
                 nerve  studies.  Biomaterials,  33(25):  5901–5913.  events after peripheral nerve injury. J Neuroinflammation,
                 http://doi.org/10.1016/j.biomaterials.2012.05.008  8: 110. 10.1186/1742–2094–8–110. http://doi.org/10.1186
             19. Edelman D B, Keefer E W, 2005, A cultural renaissance:  /1742-2094-8-110
                 In vitro cell biology embraces three-dimensional context.  32. Bozkurt A, Brook G A, Moellers S, et al., 2007, In vitro
                 Exp Neurol, 192(1): 1. http://doi.org/10.1016/j.expneurol.  assessment of axonal growth using dorsal root ganglia
                 2004.10.005                                       explants in a novel three-dimensional collagen matrix.
             20. Pampaloni F, Reynaud E G, Stelzer E H, 2007, The third  Tissue Eng, 13(12): 297–299. http://doi.org/10.1089/ten.
                 dimension bridges the gap between cell culture and live  2007.0116
                 tissue. Nat Rev Mol Cell Biol, 8(10): 839–845.  33. Rangappa N, Romero A, Nelson K D, et al., 2000,
                 http://doi.org/ 10.1038/nrm2236                   Laminin-coated poly (L-lactide) filaments induce robust
             21. Ravi M, Paramesh V, Kaviya S R, et al., 2015, 3D cell  neurite growth while providing directional orientation. J
                 culture systems: Advantages and applications. J Cell  Biomed Mater Res, 51(4): 625–634.
                 Physiol, 230(1): 16–26. http://doi.org/10.1002/jcp.24683  34. Huval R M, Miller O H, Curley J L, et al., 2015,
             22. Mazzoleni G, Di Lorenzo D, Steimberg N, 2009,     Microengineered  peripheral  nerve-on-a-chip  for
                 Modelling tissues in 3D: The next future of       preclinical physiological testing. Lab Chip, 15(10): 22–32.
                 pharmaco-toxicology and food research?. Genes Nutr,  http://doi.org/10.1039/c4lc01513d
                 4(1): 13–22. http://doi.org/10.1007/s12263–008–0107–0  35. Graham M Land Prescott M J, 2015, The multifactorial
             23. Kaplan H M, Mishra P, Kohn J, 2015, The overwhelming  role of the 3Rs in shifting the harm-benefit analysis in
                 use of rat models in nerve regeneration research may  animal models of disease. Eur J Pharmacol, 759: 19–29.
                 compromise designs of nerve guidance conduits for  http://doi.org/10.1016/j.ejphar.2015.03.040
                 humans.  J  Mater  Sci  Mater  Med,  26(8):  226.  36. Cho D W, Kang H W, 2012, Microstereolithographybased
                 http://doi.org/10.1007/s10856–015–5558–4          computer-aided manufacturing for tissue engineering.
             24. Teixeira F G, Vasconcelos N L, Gomes E D, et al., 2016,  Methods Mol Biol, 868: 341–356. http://doi.org/10.1007/
                 Bioengineered cell culture systems of central nervous  978–1–61779–764–4_21
                 system injury and disease. Drug Discov Today, 21(9):  37. Kim Y T, Haftel V K, Kumar S, et al., 2008, The role of
                 1456–1463. http://doi.org/10.1016/j.drudis.2016.04.020  aligned polymer fiber-based constructs in the bridging of
             25. Bosi S, Rauti R, Laishram J, et al., 2015, From 2D to 3D:  long peripheral nerve gaps. Biomaterials, 29(21):
                 Novel nanostructured scaffolds to investigate signalling  31–27. http://doi.org/10.1016/j.biomaterials.2008.03.042
                 in reconstructed neuronal networks. Sci Rep, 5: 9562.  38. Kwak S, Haider A, Gupta K C, et al., 2016, Micro/Nano
                 http://doi.org/10.1038/srep09562                  multilayered scaffolds of PLGA and collagen by
             26. Dunn J C, Chan W Y, Cristini V, et al., 2006, Analysis of  alternately electrospinning for bone tissue engineering.
                 cell growth in three-dimensional scaffolds. Tissue Eng,  Nanoscale Res Lett, 11(1): 323. http://doi.org/10.1186/s
                 12(4): 705–716. http://doi.org/10.1089/ten.2006.12.705  11671–016–1532–4
             27. Sodian R, Hoerstrup S P, Sperling J S, et al., 2000, Tissue  39. Tan Z, Wang H, Gao X, et al., 2016, Composite vascular
                 engineering of heart valves: In vitro experiences. Ann  grafts with high cell infiltration by co-electrospinning.

                                        International Journal of Bioprinting (2018)–Volume 4, Issue 1     11
   100   101   102   103   104   105   106   107   108   109   110