Page 82 - IJB-4-1
P. 82

Liang H, et al.

                            (A)                    (B)                     (C)










                              (D)                    (E)                     (F)










                           (G)                               (H)
















            Figure 7. Electrohydrodynamic printing of 3D cell-laden constructs with a layer number of 30. (A) Microscopic images of the printed
            cell-laden constructs. (B–C) Fluorescent images (top view and 3D profile) of the electrohydrodynamically printed cell-laden constructs. (D–
            F) Cell distribution at specific layer of 5, 15 and 25. (G) Quantification of cell number at specific layer of 5, 15 and 25. (H) Quantification
            of cell viability at specific layer of 5, 15 and 25. “NS” indicates non-significance.


            5.  Malda J, Jetze V, Ferry P M, et al., 2013, 25th Anniversary   j.copbio.2016.03.014
               article: Engineering hydrogels for biofabrication. Adv   10. Ning LQ, Chen X B, 2017, A  brief  review  of  extrusion-
               Mater, 25(36): 5011–5028. http://dx.doi.org/10.1002/  based  tissue  scaffold  bio-printing. Biotechnol J, 12(8):
               adma.201302042                                      1600671. http://dx.doi.org/10.1002/biot.201600671
            6.  Thomas B, Mieke V, Jorg S, et al., 2012, A review of trends   11. Koo Y, Kim G, 2016, New strategy for enhancing in situ cell
               and limitations in hydrogel-rapid prototyping for tissue   viability of cell-printing process via piezoelectric transducer-
               engineering. Biomaterials, 33(26): 6020–6041.  http://dx.doi.  assisted three-dimensional printing. Biofabrication, 8(2):
               org/10.1016/j.biomaterials.2012.04.050              025010. http://dx.doi.org/10.1088/1758-5090/8/2/025010
            7.  Xu T, Zhao W Z, Zhu J M, et al., 2013, Complex het ero ge-  12. Zhang B, He J K, Li X, et al., 2016, Micro/nanoscale
               neous tissue constructs containing multiple cell types prepared   electrohydrodynamic printing: From 2D to 3D. Nanoscale,
               by inkjet printing technology. Biomaterials, 34(1): 130–139.    8(34): 15376–15388. http://dx.doi.org/10.1039/c6nr04106j
               http://dx.doi.org/10.1016/j.biomaterials.2012.09.035  13. He J K, Xu FY, Cao Y, et al., 2015, Towards microscale
            8.  Lothar K, Andrea D, Sabrina S, et al., 2012, Skin tissue   electrohydrodynamic three-dimensional printing. J Phys D
               generation by laser bioprinting. Biotechnology, 109(7): 1855–  Appl Phys, 49(5): 055504. http://dx.doi.org/10.1088/0022-
               1863. http://dx.doi.org/10.1002/bit.24455           3727/49/5/055504
            9.  Zhu W, Ma X Y, Gou M L,  et al., 2016, 3D printing   14. He J K, Xu F Y, Dong R N, et al., 2016, Electrohydrodynamic
               of func tion al biomaterials for tissue engineering. Curr   3D printing of microscale poly (ε-caprolactone) scaffolds with
               Opin Bio technol, 40: 103–112. http://dx.doi.org/10.1016/  multi-walled carbon nanotubes. Biofabrication, 9(1): 015007.

                                         International Journal of Bioprinting (2018)–Volume 4, Issue 1         7
   77   78   79   80   81   82   83   84   85   86   87