Page 83 - IJB-4-1
P. 83

Coaxial nozzle-assisted electrohydrodynamic printing for microscale 3D cell-laden constructs

               http://dx.doi.org/10.1088/1758-5090/aa53bc          electrospinning. Nano Lett, 11(4): 1831–1837. http://dx.doi.
            15. Mao M, He J K, Li X, et al., 2017, The emerging frontiers and   org/10.1021/nl2006164
               applications of high-resolution 3D printing. Micromachines,   25. Li J L, Cai YL, Guo Y L, et al., 2014, Fabrication of three-
               8(4): 113. http://dx.doi.org/10.3390/mi8040113      dimensional porous scaffolds with controlled filament
            16. Onses M S, Sutanto E, Ferreira P M, et al., 2015, Mech-  orientation and large pore size via an improved E-jetting
               a nisms, capabilities, and applications of high-resolution   technique. J Biomed Mater Res B Appl Biomater, 102B(4):
               electrohydrodynamic jet printing. Small, 11(34): 4267–4266.
                                                                   651–658. http://dx.doi.org/10.1002/jbm.b.33043
               http://dx.doi.org/10.1002/smll.201500593         26. Bu N, Huang Y G, Wang X M, et al., 2012, Continuous
            17. Lee H, Seong B, Jang Y, et al., 2014, Direct alignment and   tunable and oriented nanofiber direct-written by mechano-
               patterning of silver nanowires by electrohydrodynamic jet   electrospinning. Mater Manuf Process, 27(12): 1318–132.
               printing. Small, 10(19): 3918–3922. http://dx.doi.org/10.1002/
               smll.201400936                                      http://dx.doi.org/10.1080/10426914.2012.700145
            18. Ahmad Z, Rasekh M, Edirisinghe M, 2010, Elec tro hy dro dy-  27. Jayasinghe S N, 2013, Cell electrospinning: A novel tool for
               na mic direct writing of biomedical polymers and composites.   functionalizing fibres, scaffolds and membranes with living
               Macromol Mater Eng, 295(4): 315–319. http://dx.doi.  cells and other advanced materials for regenerative biology
               org/10.1002/mame.200900396                          and medicine. Analyst, 138(8): 2215–2223. http://dx.doi.
            19. Parajuli D, Koomsap P, Parkhi A A, et al., 2016, Experimental   org/10.1039/c3an36599a
               investigation on process parameters of near-field deposition   28. Zhao X, He J K, Xu F Y, et al., 2016, Electrohydrodynamic
               of electrispinning-based rapid prototyping. Virtual Phys   printing: A potential tool for high-resolution hydrogel/cell
               Prototyp, 11(3):193–207. http://dx.doi.org/10.1080/17452759.  patterning. Virtual Phys Prototyp, 11 (1): 57–63. http://dx.doi.
               2016.1210314                                        org/10.1080/17452759.2016.1139378
            20. Wei C, Dong J, 2013, Direct fabrication of high-res-  29. Ehler E, Jayasinghe S N, 2014, Cell electrospinning cardiac
               o lu tion three-dimensional polymeric scaffolds using   patches for tissue engineering the heart. Analyst, 139(18):
               electrohydrodynamic hot jet plotting.  J Micromech   4449–4452. http://dx.doi.org/10.1039/c4an00766b
               Microeng, 23(2): 025017. http://dx.doi.org/10.1088/0960-  30. Jayasinghe S N, Qureshi, A N, Eagles, P A, et al., 2006,
               1317/23/2/025017.                                   Electrohydrodynamic jet processing: An advanced electric-
            21. Zheng G, Sun L L, Wang X, et al., 2016, Electrohydrodynamic   field-driven jetting phenomenon for processing living
               direct-writing microfiber patterns under stretching. Appl Phys   cells. Small, 2(2): 216–219. http://dx.doi.org/10.1002/
               A Mater Sci Process, 122(2): 1–9. http://dx.doi.org/10.1007/  smll.200500291
               s00339-015-9584-3
                                                                31. Gasperini L, Manigiglio D, Motta A, et al., 2015, An
            22. Chanthakulchan A, Koomsap P, Parkhi, et al., 2015, En vi ron-  electrohydrodynamic bioprinter for alginate hydrogels
               men tal effects in fiber fabrication using electrispinning-based
               rapid prototyping. Virtual Phys Prototyp, 10(4): 227–237.   containing living cells. Tissue Eng Part C Methods, 21(2):
               http://dx.doi.org/10.1080/17452759.2015.1112411     123–132. http://dx.doi.org/10.1089./ten.tec.2014.0149
            23. Chanthakulchan A, Koomsap P, Auyson K, et al., 2015,   32. Yeo M, Ha J H, Lee H, et al., 2016, Fabrication of hASCs-
               Development of an electrospinning-based rapid prototyping   laden structures using extrusion-based bioprinting
               for scaffold fabrication, Rapid Prototyp J, 21(3): 329–339.   supplemented with an electric field. Acta Biomater, 38: 33–43.
               http://dx.doi.org/10.1108/RPJ-11-2013-0119          http://dx.doi.org/10.1016/j.actbio.2016.04.017
            24. Bisht GS, Ciulin C, Alireza M, et al., 2011, Controlled   33. He J K, Zhao X, Chang J K, et al., 2017, Microscale
               continuous patterning of polymeric nanofibers on three-  electrohydrodynamic bioprinting with high viability. Small:
               dimensional substrates using low voltage near-field   1702626. http://dx.doi.org/10.1002/smll.201702626










            8                            International Journal of Bioprinting (2018)–Volume 4, Issue 1
   78   79   80   81   82   83   84   85   86   87   88