Page 83 - IJB-4-1
P. 83
Coaxial nozzle-assisted electrohydrodynamic printing for microscale 3D cell-laden constructs
http://dx.doi.org/10.1088/1758-5090/aa53bc electrospinning. Nano Lett, 11(4): 1831–1837. http://dx.doi.
15. Mao M, He J K, Li X, et al., 2017, The emerging frontiers and org/10.1021/nl2006164
applications of high-resolution 3D printing. Micromachines, 25. Li J L, Cai YL, Guo Y L, et al., 2014, Fabrication of three-
8(4): 113. http://dx.doi.org/10.3390/mi8040113 dimensional porous scaffolds with controlled filament
16. Onses M S, Sutanto E, Ferreira P M, et al., 2015, Mech- orientation and large pore size via an improved E-jetting
a nisms, capabilities, and applications of high-resolution technique. J Biomed Mater Res B Appl Biomater, 102B(4):
electrohydrodynamic jet printing. Small, 11(34): 4267–4266.
651–658. http://dx.doi.org/10.1002/jbm.b.33043
http://dx.doi.org/10.1002/smll.201500593 26. Bu N, Huang Y G, Wang X M, et al., 2012, Continuous
17. Lee H, Seong B, Jang Y, et al., 2014, Direct alignment and tunable and oriented nanofiber direct-written by mechano-
patterning of silver nanowires by electrohydrodynamic jet electrospinning. Mater Manuf Process, 27(12): 1318–132.
printing. Small, 10(19): 3918–3922. http://dx.doi.org/10.1002/
smll.201400936 http://dx.doi.org/10.1080/10426914.2012.700145
18. Ahmad Z, Rasekh M, Edirisinghe M, 2010, Elec tro hy dro dy- 27. Jayasinghe S N, 2013, Cell electrospinning: A novel tool for
na mic direct writing of biomedical polymers and composites. functionalizing fibres, scaffolds and membranes with living
Macromol Mater Eng, 295(4): 315–319. http://dx.doi. cells and other advanced materials for regenerative biology
org/10.1002/mame.200900396 and medicine. Analyst, 138(8): 2215–2223. http://dx.doi.
19. Parajuli D, Koomsap P, Parkhi A A, et al., 2016, Experimental org/10.1039/c3an36599a
investigation on process parameters of near-field deposition 28. Zhao X, He J K, Xu F Y, et al., 2016, Electrohydrodynamic
of electrispinning-based rapid prototyping. Virtual Phys printing: A potential tool for high-resolution hydrogel/cell
Prototyp, 11(3):193–207. http://dx.doi.org/10.1080/17452759. patterning. Virtual Phys Prototyp, 11 (1): 57–63. http://dx.doi.
2016.1210314 org/10.1080/17452759.2016.1139378
20. Wei C, Dong J, 2013, Direct fabrication of high-res- 29. Ehler E, Jayasinghe S N, 2014, Cell electrospinning cardiac
o lu tion three-dimensional polymeric scaffolds using patches for tissue engineering the heart. Analyst, 139(18):
electrohydrodynamic hot jet plotting. J Micromech 4449–4452. http://dx.doi.org/10.1039/c4an00766b
Microeng, 23(2): 025017. http://dx.doi.org/10.1088/0960- 30. Jayasinghe S N, Qureshi, A N, Eagles, P A, et al., 2006,
1317/23/2/025017. Electrohydrodynamic jet processing: An advanced electric-
21. Zheng G, Sun L L, Wang X, et al., 2016, Electrohydrodynamic field-driven jetting phenomenon for processing living
direct-writing microfiber patterns under stretching. Appl Phys cells. Small, 2(2): 216–219. http://dx.doi.org/10.1002/
A Mater Sci Process, 122(2): 1–9. http://dx.doi.org/10.1007/ smll.200500291
s00339-015-9584-3
31. Gasperini L, Manigiglio D, Motta A, et al., 2015, An
22. Chanthakulchan A, Koomsap P, Parkhi, et al., 2015, En vi ron- electrohydrodynamic bioprinter for alginate hydrogels
men tal effects in fiber fabrication using electrispinning-based
rapid prototyping. Virtual Phys Prototyp, 10(4): 227–237. containing living cells. Tissue Eng Part C Methods, 21(2):
http://dx.doi.org/10.1080/17452759.2015.1112411 123–132. http://dx.doi.org/10.1089./ten.tec.2014.0149
23. Chanthakulchan A, Koomsap P, Auyson K, et al., 2015, 32. Yeo M, Ha J H, Lee H, et al., 2016, Fabrication of hASCs-
Development of an electrospinning-based rapid prototyping laden structures using extrusion-based bioprinting
for scaffold fabrication, Rapid Prototyp J, 21(3): 329–339. supplemented with an electric field. Acta Biomater, 38: 33–43.
http://dx.doi.org/10.1108/RPJ-11-2013-0119 http://dx.doi.org/10.1016/j.actbio.2016.04.017
24. Bisht GS, Ciulin C, Alireza M, et al., 2011, Controlled 33. He J K, Zhao X, Chang J K, et al., 2017, Microscale
continuous patterning of polymeric nanofibers on three- electrohydrodynamic bioprinting with high viability. Small:
dimensional substrates using low voltage near-field 1702626. http://dx.doi.org/10.1002/smll.201702626
8 International Journal of Bioprinting (2018)–Volume 4, Issue 1

