Page 50 - IJB-4-2
P. 50

Bioprinting of artificial blood vessels

               Advances in vascular tissue engineering using protein-based   460–472. https://doi.org/10.1007/s12195-014-0340-0
               biomaterials. Tissue Eng, 13(11): 2601–2613. https://doi.  26.  Cui X, Boland T, D’Lima D D, et al., 2012, Thermal inkjet
               org/10.1089/ten.2007.0196                          printing in tissue engineering and regenerative medicine.
           13.  Ozbolat I T, Moncal K K, Gudapati H, 2017, Evaluation of   Recent Pat Drug Deliv Formul, 6(2): 149–155. https://doi.
               bioprinter technologies. Addit Manuf, 13: 179–200.  org/10.2174/187221112800672949
           14.  Jungst T, Smolan W, Schacht K, et al., 2016, Strategies   27.  Ng W L, Lee J M, Yeong W Y, et al., 2017, Microvalve-
               and molecular design criteria for 3D printable hydrogels.   based bioprinting – process, bio-inks and applications.
               Chem Rev, 116(3): 1496–1539. https://doi.org/10.1021/acs.  Biomater Sci, 5(4): 632–647. https://doi.org/10.1039/
               chemrev.5b00303                                    c6bm00861e
           15.  Kalil S, Sun W, 2009, Bioprinting endothelial cells with   28.  deJong J, deBruin G, Reinten H, et al., 2006, Air entrapment
               alginate for 3D tissue constructs. J Biomech Eng,131(11):   in piezo-driven inkjet printheads. J Acoust Soc Am, 120(3):
               111002. https://doi.org/10.1115/1.3128729          1257–1265.
           16.  Levato R, Visser J, Planell J A, et al., 2014, Biofabrication   29.  Keriquel V, Oliveira H, Rémy M, et al., 2017, In situ printing
               of tissue constructs by 3D bioprinting of cell-laden   of mesenchymal stromal cells, by laser-assisted bioprinting,
               microcarriers. Biofabrication, 6(3): 035020. https://doi.  for in vivo bone regeneration applications. Sci Rep, 7(1):
               org/10.1088/1758-5082/6/3/035020                   1778. https://doi.org/10.1038/s41598-017-01914-x
           17.  Owens C M, Marga F, Forgacs G, et al., 2013, Biofabrication   30.  Selimis A, Mironov V, Farsari M, 2014, Direct laser
               and testing of a fully cellular nerve graft. Biofabrication,   writing: Principles and materials for scaffold 3D printing.
               5(4): 045007. https://doi.org/10.1088/1758-5082/5/4/045007  Microelectron Eng, 132: 83–89.
           18.  Yu Y, Ozbolat I T, 2014, Tissue strands as “bioink” for scale-  31.  Wang Z, Abdulla R, Parker B, et al., 2015, A simple and
               up organ printing. Conf Proc IEEE Eng Med Biol Soc, 2014:   high-resolution stereolithography-based 3D bioprinting
               1428–1431. https://doi.org/10.1109/EMBC.2014.6943868  system using visible light crosslinkable bioinks.
           19.  Ozbolat I T, Hospodiuk M, 2016, Current advances   Biofabrication, 7(4): 045009. https://doi.org/10.1088/1758-
               and future perspectives in extrusion-based bioprinting.   5090/7/4/045009
               Biomaterials, 76: 321–343. https://doi.org/10.1016/  32.  Koch L, Brandt O, Deiwick A, et al., 2017, Laser-assisted
               j.biomaterials.2015.10.076                         bioprinting at different wavelengths and pulse durations
           20.  Drury J L, Mooney D J, 2003, Hydrogels for tissue   with a metal dynamic release layer: A parametric study. Int J
               engineering: Scaffold design variables and applications.   Bioprinting, 3(1): 42–53.
               Biomaterials, 24(24): 4337–4351. https://doi.org/10.1016/  33.  Zhang Y, 2014, 3D bioprinting of vasculature network for
               S0142-9612(03)00340-5                              tissue engineering. thesis, Iowa Research Online, University
           21.  Ahmed E M, 2015, Hydrogel: Preparation, characterization,   of Iowa, 1–135.
               and applications: A review. J Adv Res, 6(2): 105–121. https://  34.  Wu W, Deconinck A, Lewis J A, 2011, Omnidirectional
               doi.org/10.1016/j.jare.2013.07.006                 printing of 3D microvascular networks. Adv Mater, 23(24):
           22.  Suntornnond R, An J, Chua C K, 2017, Roles of support   H178–183. https://doi.org/10.1002/adma.201004625
               materials in 3D bioprinting. Int J Bioprinting, 3(1): 83–86.   35.  Cui X, Boland  T, 2009, Human microvasculature
               http://dx.doi.org/10.18063/IJB.2017.01.006         fabrication using thermal inkjet printing technology.
           23.  Hendriks J, Willem Visser C, Henke S, et al., 2015,   Biomaterials, 30(31): 6221–6227. https://doi.org/10.1016/
               Optimizing cell viability in droplet-based cell deposition. Sci   j.biomaterials.2009.07.056
               Rep, 5: 1–10. https://doi.org/10.1038/srep11304  36.  Blaeser A, Duarte Campos D F, Weber M, et al., 2013,
           24.  Gudapati H, Dey M, Ozbolat I, 2016, A comprehensive   Biofabrication under fluorocarbon: A novel freeform
               review on droplet-based bioprinting: Past, present and   fabrication technique to generate high aspect ratio tissue-
               future. Biomaterials, 102: 20–42. https://doi.org/10.1016/  engineered constructs. Biores Open Access, 2(5): 374–384.
               j.biomaterials.2016.06.012                         https://doi.org/10.1089/biores.2013.0031
           25.  Lee V K, Lanzi A M, Ngo H, et al., 2014, Generation of   37.  Jang J, Yi H-G, Cho D-W, 2016, 3D printed tissue models:
               multi-scale vascular network system within 3D hydrogel   Present and future. ACS Biomater Sci Eng, 2(10): 1722–
               using 3D bio-printing technology. Cell Mol Bioeng, 7(3):   1731.

           14                          International Journal of Bioprinting (2018)–Volume 4, Issue 2
   45   46   47   48   49   50   51   52   53   54   55