Page 52 - IJB-4-2
P. 52

Bioprinting of artificial blood vessels

               printing (BioLP). Biofabrication, 2(1): 014111. https://doi.  71.  An J, Chua C K, Mironov V, 2016, A perspective on 4D
               org/10.1088/1758-5082/2/1/014111                   bioprinting. Int J Bioprinting, 2(1): 3–5. http://dx.doi.
           62.  Gaebel R, Ma N, Liu J, et al., 2011, Patterning human stem   org/10.18063/IJB.2016.01.003
               cells and endothelial cells with laser printing for cardiac   72.  Yu Y, Moncal K K, Li J, et al., 2016, Three-dimensional
               regeneration. Biomaterials, 32(35): 9218–9230. https://doi.  bioprinting using self-Assembling scalable scaffold-free
               org/10.1016/j.biomaterials.2011.08.071             “tissue strands” as a new bioink. Sci Rep, 6: 28714. https://
           63.  Kim B S, Kwon Y W, Kong J-S, et al., 2018, 3D cell printing   doi.org/10.1038/srep28714
               of in vitro stabilized skin model and in vivo pre-vascularized   73.  Sooppan R, Paulsen S J, Han J, et al., 2016, In vivo
               skin patch using tissue-specific extracellular matrix   anastomosis and perfusion of a three-dimensionally-printed
               bioink: A step towards advanced skin tissue engineering.   construct containing microchannel networks. Tissue Eng
               Biomaterials, 168: 38–53. https://doi.org/10.1016/  Part C Methods, 22(1): 1–7. https://doi.org/10.1089/ten.
               j.biomaterials.2018.03.040                         TEC.2015.0239
           64.  Shojaie S, Ermini L, Ackerley C, et al., 2015, Acellular lung   74.  Zhang B, Montgomery M, Chamberlain M D, et al., 2016,
               scaffolds direct differentiation of endoderm to functional   Biodegradable scaffold with built-in vasculature for organ-
               airway epithelial cells: Requirement of matrix-bound HS   on-a-chip engineering and direct surgical anastomosis. Nat
               proteoglycans. Stem Cell Reports, 4(3): 419–430. https://doi.  Mater, 15(6): 669–678. https://doi.org/10.1038/nmat4570
               org/10.1016/j.stemcr.2015.01.004                75.  Greco Song H-H, Rumma R T, Ozaki C K, et al., 2018,
           65.  Ozbolat I T, 2015, Scaffold-based or scaffold-free   Vascular Tissue Engineering: Progress, Challenges, and
               bioprinting: Competing or complementing approaches? J   Clinical Promise. Cell Stem Cell, 22(4): 608. https://doi.
               Nanotechnol Eng Med, 6(2): 24701.                  org/10.1016/j.stem.2018.03.014
           66.  Tan E Y S, Yeong W Y, 2015, Concentric bioprinting   76.  Chang W G, Niklason L E, 2017, A short discourse on
               of alginate-based tubular constructs using multi-nozzle   vascular tissue engineering. NPJ Regen Med, 2(1): 7. https://
               extrusion-based technique. Int J Bioprinting, 1(1): 49–56.   doi.org/10.1038/s41536-017-0011-6
               http://dx.doi.org/10.18063/IJB.2015.01.003      77.  Sekine H, Shimizu T, Sakaguchi K, et al., 2013, In vitro
           67.  Priya Kesari, Tao Xu T B, 2005, Layer-by-layer printing of   fabrication of functional three-dimensional tissues with
               cells and its application to tissue engineering. Mater Res,   perfusable blood vessels. Nat Commun, 4:1399. https://doi.
               845:111–117.                                       org/10.1038/ncomms2406
           68.  Tchan J, 2008, Forensic examination of laser printers and   78.  Dimitrievska S, Niklason L E, 2018, Historical perspective
               photocopiers using digital image analysis to assess print   and future direction of blood vessel developments. Cold
               characteristics. J Imaging Sci Technol, 52(1): 1–15.  Spring Harb Perspect Med, 8(2): a025742. https://doi.
           69.  Hasan A, Paul A, Memic A, et al., 2015, A multilayered   org/10.1101/cshperspect.a025742
               microfluidic blood vessel-like structure.  Biomed   79.  Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink properties
               Microdevices, 17(5): 88. https://doi.org/10.1007/s10544-  before, during and after 3D bioprinting. Biofabrication,
               015-9993-2                                         8(3):032002. https://doi.org/10.1088/1758-5090/8/3/032002
           70.  Gao B, Yang Q, Zhao X, et al., 2016, 4D bioprinting for   80.  Han X, Bibb R, Harris R, 2016, Engineering design of
               biomedical applications. Trends Biotechnol, 34(9): 746–756.   artificial vascular junctions for 3D printing. Biofabrication,
               https://doi.org/10.1016/j.tibtech.2016.03.004      8(2):025018. https://doi.org/10.1088/1758-5090/8/2/025018

















           16                          International Journal of Bioprinting (2018)–Volume 4, Issue 2
   47   48   49   50   51   52   53   54   55   56   57