Page 52 - IJB-4-2
P. 52
Bioprinting of artificial blood vessels
printing (BioLP). Biofabrication, 2(1): 014111. https://doi. 71. An J, Chua C K, Mironov V, 2016, A perspective on 4D
org/10.1088/1758-5082/2/1/014111 bioprinting. Int J Bioprinting, 2(1): 3–5. http://dx.doi.
62. Gaebel R, Ma N, Liu J, et al., 2011, Patterning human stem org/10.18063/IJB.2016.01.003
cells and endothelial cells with laser printing for cardiac 72. Yu Y, Moncal K K, Li J, et al., 2016, Three-dimensional
regeneration. Biomaterials, 32(35): 9218–9230. https://doi. bioprinting using self-Assembling scalable scaffold-free
org/10.1016/j.biomaterials.2011.08.071 “tissue strands” as a new bioink. Sci Rep, 6: 28714. https://
63. Kim B S, Kwon Y W, Kong J-S, et al., 2018, 3D cell printing doi.org/10.1038/srep28714
of in vitro stabilized skin model and in vivo pre-vascularized 73. Sooppan R, Paulsen S J, Han J, et al., 2016, In vivo
skin patch using tissue-specific extracellular matrix anastomosis and perfusion of a three-dimensionally-printed
bioink: A step towards advanced skin tissue engineering. construct containing microchannel networks. Tissue Eng
Biomaterials, 168: 38–53. https://doi.org/10.1016/ Part C Methods, 22(1): 1–7. https://doi.org/10.1089/ten.
j.biomaterials.2018.03.040 TEC.2015.0239
64. Shojaie S, Ermini L, Ackerley C, et al., 2015, Acellular lung 74. Zhang B, Montgomery M, Chamberlain M D, et al., 2016,
scaffolds direct differentiation of endoderm to functional Biodegradable scaffold with built-in vasculature for organ-
airway epithelial cells: Requirement of matrix-bound HS on-a-chip engineering and direct surgical anastomosis. Nat
proteoglycans. Stem Cell Reports, 4(3): 419–430. https://doi. Mater, 15(6): 669–678. https://doi.org/10.1038/nmat4570
org/10.1016/j.stemcr.2015.01.004 75. Greco Song H-H, Rumma R T, Ozaki C K, et al., 2018,
65. Ozbolat I T, 2015, Scaffold-based or scaffold-free Vascular Tissue Engineering: Progress, Challenges, and
bioprinting: Competing or complementing approaches? J Clinical Promise. Cell Stem Cell, 22(4): 608. https://doi.
Nanotechnol Eng Med, 6(2): 24701. org/10.1016/j.stem.2018.03.014
66. Tan E Y S, Yeong W Y, 2015, Concentric bioprinting 76. Chang W G, Niklason L E, 2017, A short discourse on
of alginate-based tubular constructs using multi-nozzle vascular tissue engineering. NPJ Regen Med, 2(1): 7. https://
extrusion-based technique. Int J Bioprinting, 1(1): 49–56. doi.org/10.1038/s41536-017-0011-6
http://dx.doi.org/10.18063/IJB.2015.01.003 77. Sekine H, Shimizu T, Sakaguchi K, et al., 2013, In vitro
67. Priya Kesari, Tao Xu T B, 2005, Layer-by-layer printing of fabrication of functional three-dimensional tissues with
cells and its application to tissue engineering. Mater Res, perfusable blood vessels. Nat Commun, 4:1399. https://doi.
845:111–117. org/10.1038/ncomms2406
68. Tchan J, 2008, Forensic examination of laser printers and 78. Dimitrievska S, Niklason L E, 2018, Historical perspective
photocopiers using digital image analysis to assess print and future direction of blood vessel developments. Cold
characteristics. J Imaging Sci Technol, 52(1): 1–15. Spring Harb Perspect Med, 8(2): a025742. https://doi.
69. Hasan A, Paul A, Memic A, et al., 2015, A multilayered org/10.1101/cshperspect.a025742
microfluidic blood vessel-like structure. Biomed 79. Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink properties
Microdevices, 17(5): 88. https://doi.org/10.1007/s10544- before, during and after 3D bioprinting. Biofabrication,
015-9993-2 8(3):032002. https://doi.org/10.1088/1758-5090/8/3/032002
70. Gao B, Yang Q, Zhao X, et al., 2016, 4D bioprinting for 80. Han X, Bibb R, Harris R, 2016, Engineering design of
biomedical applications. Trends Biotechnol, 34(9): 746–756. artificial vascular junctions for 3D printing. Biofabrication,
https://doi.org/10.1016/j.tibtech.2016.03.004 8(2):025018. https://doi.org/10.1088/1758-5090/8/2/025018
16 International Journal of Bioprinting (2018)–Volume 4, Issue 2

