Page 51 - IJB-4-2
P. 51

Ng H Y, et al.

           38.  Tasoglu S, Demirci U, 2013, Bioprinting for stem cell   Characterizing environmental factors that impact the
               research. Trends Biotechnol, 31(1): 10–19. https://doi.  viability of tissue-engineered constructs fabricated by a
               org/10.1016/j.tibtech.2012.10.005                  direct-write bioassembly tool. Tissue Eng, 13(2): 373–383.
           39.  Guillemot F, Souquet A, Catros S, et al., 2010, Laser-assisted   https://doi.org/10.1089/ten.2006.0101
               cell printing: Principle, physical parameters versus cell fate   51.  Zhang Y S, Davoudi F, Walch P, et al., 2016, Bioprinted
               and perspectives in tissue engineering. Nanomedicine, 5(3):   thrombosis-on-a-chip. Lab Chip, 16(21): 4097–4105.
               507–515.                                        52.  Suntornnond R, Tan E Y S, An J, et al., 2017, A highly
           40.  Williams C G, Malik A N, Kim T K, et al., 2005, Variable   printable and biocompatible hydrogel composite for direct
               cytocompatibility of six cell lines with photoinitiators   printing of soft and perfusable vasculature-like structures.
               used for polymerizing hydrogels and cell encapsulation.   Sci Rep, 7(1): 16902. https://doi.org/10.1038/s41598-017-
               Nanomedicine (Lond), 26(11): 1211–1218. https://doi.  17198-0
               org/10.2217/nnm.10.14                           53.  Bertassoni L E, Cecconi M, Manoharan  V,  et al.,
           41.  Mandrycky C, Wang Z, Kim K, et al., 2016, 3D bioprinting   2014, Hydrogel bioprinted microchannel networks for
               for engineering complex tissues. Biotechnol Adv, 34(4):   vascularization of tissue engineering constructs. Lab Chip,
               422–434. https://doi.org/10.1016/j.biotechadv.2015.12.011  14(13): 2202–2211. https://doi.org/10.1039/c4lc00030g
           42.  Bovard D, Iskandar A, Luettich K, et al., 2017, Organs-on-a-  54.  Skaat H, Ziv-Polat O, Shahar A, et al., 2012, Magnetic
               chip. Toxicol Res Appl, 1: 1–16.                   scaffolds enriched with bioactive nanoparticles for tissue
           43.  Pampaloni F, Reynaud E G, Stelzer E H K, 2007, The third   engineering. Adv Healthc Mater, 1(2): 168–171. https://doi.
               dimension bridges the gap between cell culture and live   org/10.1002/adhm.201100056
               tissue. Nat Rev Mol Cell Biol, 8(10): 839–845. https://doi.  55.  Lee V K, Kim D Y, Ngo H, et al., 2014, Creating perfused
               org/10.1038/nrm2236                                functional vascular channels using 3D bio-printing
           44.  Torii T, Miyazawa M, Koyama I, 2005, Effect of continuous   technology. Biomaterials, 35(28): 8092–8102. https://doi.
               application of shear stress on liver tissue: Continuous   org/10.1016/j.biomaterials.2014.05.083
               application of appropriate shear stress has advantage in   56.  Covello K L, Simon M C, 2004, HIFs, hypoxia, and vascular
               protection of liver tissue. Transplant Proc, 37(10): 4575–  development. Curr Top Dev Biol, 62: 37–54.
               4578. https://doi.org/10.1016/j.transproceed.2005.10.118  57.  Park K M, Gerecht S, 2014, Hypoxia-inducible hydrogels.
           45.  Smith C M, Stone A L, Parkhill R L, et al., 2004, Three-  Nat Commun, 5: 4075. https://doi.org/10.1016/S0070-
               dimensional bioassembly tool for generating viable tissue-  2153(04)62002-3
               engineered constructs. Tissue Eng, 10(9–10): 1566–1576.   58.  Gauvin R, Ahsan T, Larouche D, et al., 2010, A novel single-
               https://doi.org/10.1089/ten.2004.10.1566           step self-assembly approach for the fabrication of tissue-
           46.  Koike N, Fukumura D, Gralla O, et al., 2004, Creation of   engineered vascular constructs. Tissue Eng Part A, 16(5):
               long-lasting blood vessels. Nature, 428(6979): 138–139.   1737–1747. https://doi.org/10.1089/ten.TEA.2009.0313
               https://doi.org/10.1038/428138a                 59.  Sales V L, Engelmayr G C, Mettler B A, et al., 2006,
           47.  Li S, Xiong Z, Wang X, et al., 2009, Direct fabrication   Transforming growth factor-β1 modulates extracellular
               of a hybrid cell/hydrogel construct by a double-nozzle   matrix production, proliferation, and apoptosis of
               assembling technology. J Bioact Compat Polym, 24(3): 249–  endothelial progenitor cells in tissue-engineering scaffolds.
               265. https://doi.org/10.1177/0883911509104094      Circulation, 114(1): I193–I199. https://doi.org/10.1161/
           48.  Gao Q, He Y, Fu J zhong, et al., 2015, Coaxial nozzle-  CIRCULATIONAHA.105.001628
               assisted 3D bioprinting with built-in microchannels for   60.  Guillotin B, Souquet A, Catros S, et al., 2010, Laser assisted
               nutrients delivery. Biomaterials, 61: 203–215. https://doi.  bioprinting of engineered tissue with high cell density and
               org/10.1016/j.biomaterials.2015.05.031             microscale organization. Biomaterials, 31(28): 7250–7256.
           49.  Khattak S F, Bhatia S R, Roberts S C, 2005, Pluronic F127   https://doi.org/10.1016/j.biomaterials.2010.05.055
               as a cell encapsulation material: Utilization of membrane-  61.  Wu P K, Ringeisen B R, 2010, Development of human
               stabilizing agents. Tissue Eng, 11(5–6): 974–983. https://doi.  umbilical vein endothelial cell (HUVEC) and human
               org/10.1089/ten.2005.11.974                        umbilical vein smooth muscle cell (HUVSMC) branch/
           50.  Smith C M, Christian J J, Warren W L, et al., 2007,   stem structures on hydrogel layers via biological laser

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 2        15
   46   47   48   49   50   51   52   53   54   55   56