Page 51 - IJB-4-2
P. 51
Ng H Y, et al.
38. Tasoglu S, Demirci U, 2013, Bioprinting for stem cell Characterizing environmental factors that impact the
research. Trends Biotechnol, 31(1): 10–19. https://doi. viability of tissue-engineered constructs fabricated by a
org/10.1016/j.tibtech.2012.10.005 direct-write bioassembly tool. Tissue Eng, 13(2): 373–383.
39. Guillemot F, Souquet A, Catros S, et al., 2010, Laser-assisted https://doi.org/10.1089/ten.2006.0101
cell printing: Principle, physical parameters versus cell fate 51. Zhang Y S, Davoudi F, Walch P, et al., 2016, Bioprinted
and perspectives in tissue engineering. Nanomedicine, 5(3): thrombosis-on-a-chip. Lab Chip, 16(21): 4097–4105.
507–515. 52. Suntornnond R, Tan E Y S, An J, et al., 2017, A highly
40. Williams C G, Malik A N, Kim T K, et al., 2005, Variable printable and biocompatible hydrogel composite for direct
cytocompatibility of six cell lines with photoinitiators printing of soft and perfusable vasculature-like structures.
used for polymerizing hydrogels and cell encapsulation. Sci Rep, 7(1): 16902. https://doi.org/10.1038/s41598-017-
Nanomedicine (Lond), 26(11): 1211–1218. https://doi. 17198-0
org/10.2217/nnm.10.14 53. Bertassoni L E, Cecconi M, Manoharan V, et al.,
41. Mandrycky C, Wang Z, Kim K, et al., 2016, 3D bioprinting 2014, Hydrogel bioprinted microchannel networks for
for engineering complex tissues. Biotechnol Adv, 34(4): vascularization of tissue engineering constructs. Lab Chip,
422–434. https://doi.org/10.1016/j.biotechadv.2015.12.011 14(13): 2202–2211. https://doi.org/10.1039/c4lc00030g
42. Bovard D, Iskandar A, Luettich K, et al., 2017, Organs-on-a- 54. Skaat H, Ziv-Polat O, Shahar A, et al., 2012, Magnetic
chip. Toxicol Res Appl, 1: 1–16. scaffolds enriched with bioactive nanoparticles for tissue
43. Pampaloni F, Reynaud E G, Stelzer E H K, 2007, The third engineering. Adv Healthc Mater, 1(2): 168–171. https://doi.
dimension bridges the gap between cell culture and live org/10.1002/adhm.201100056
tissue. Nat Rev Mol Cell Biol, 8(10): 839–845. https://doi. 55. Lee V K, Kim D Y, Ngo H, et al., 2014, Creating perfused
org/10.1038/nrm2236 functional vascular channels using 3D bio-printing
44. Torii T, Miyazawa M, Koyama I, 2005, Effect of continuous technology. Biomaterials, 35(28): 8092–8102. https://doi.
application of shear stress on liver tissue: Continuous org/10.1016/j.biomaterials.2014.05.083
application of appropriate shear stress has advantage in 56. Covello K L, Simon M C, 2004, HIFs, hypoxia, and vascular
protection of liver tissue. Transplant Proc, 37(10): 4575– development. Curr Top Dev Biol, 62: 37–54.
4578. https://doi.org/10.1016/j.transproceed.2005.10.118 57. Park K M, Gerecht S, 2014, Hypoxia-inducible hydrogels.
45. Smith C M, Stone A L, Parkhill R L, et al., 2004, Three- Nat Commun, 5: 4075. https://doi.org/10.1016/S0070-
dimensional bioassembly tool for generating viable tissue- 2153(04)62002-3
engineered constructs. Tissue Eng, 10(9–10): 1566–1576. 58. Gauvin R, Ahsan T, Larouche D, et al., 2010, A novel single-
https://doi.org/10.1089/ten.2004.10.1566 step self-assembly approach for the fabrication of tissue-
46. Koike N, Fukumura D, Gralla O, et al., 2004, Creation of engineered vascular constructs. Tissue Eng Part A, 16(5):
long-lasting blood vessels. Nature, 428(6979): 138–139. 1737–1747. https://doi.org/10.1089/ten.TEA.2009.0313
https://doi.org/10.1038/428138a 59. Sales V L, Engelmayr G C, Mettler B A, et al., 2006,
47. Li S, Xiong Z, Wang X, et al., 2009, Direct fabrication Transforming growth factor-β1 modulates extracellular
of a hybrid cell/hydrogel construct by a double-nozzle matrix production, proliferation, and apoptosis of
assembling technology. J Bioact Compat Polym, 24(3): 249– endothelial progenitor cells in tissue-engineering scaffolds.
265. https://doi.org/10.1177/0883911509104094 Circulation, 114(1): I193–I199. https://doi.org/10.1161/
48. Gao Q, He Y, Fu J zhong, et al., 2015, Coaxial nozzle- CIRCULATIONAHA.105.001628
assisted 3D bioprinting with built-in microchannels for 60. Guillotin B, Souquet A, Catros S, et al., 2010, Laser assisted
nutrients delivery. Biomaterials, 61: 203–215. https://doi. bioprinting of engineered tissue with high cell density and
org/10.1016/j.biomaterials.2015.05.031 microscale organization. Biomaterials, 31(28): 7250–7256.
49. Khattak S F, Bhatia S R, Roberts S C, 2005, Pluronic F127 https://doi.org/10.1016/j.biomaterials.2010.05.055
as a cell encapsulation material: Utilization of membrane- 61. Wu P K, Ringeisen B R, 2010, Development of human
stabilizing agents. Tissue Eng, 11(5–6): 974–983. https://doi. umbilical vein endothelial cell (HUVEC) and human
org/10.1089/ten.2005.11.974 umbilical vein smooth muscle cell (HUVSMC) branch/
50. Smith C M, Christian J J, Warren W L, et al., 2007, stem structures on hydrogel layers via biological laser
International Journal of Bioprinting (2018)–Volume 4, Issue 2 15

