Page 158 - IJB-10-4
P. 158
International Journal of Bioprinting 3D printing innovations against infection
65. Schilcher K, Horswill AR. Staphylococcal biofilm 77. Tetsworth K, Block S, Glatt V. Putting 3D modelling and
development: structure, regulation, and treatment strategies. 3D printing into practice: virtual surgery and preoperative
Microbiol Mol Biol Rev. 2020;84(3). planning to reconstruct complex post-traumatic skeletal
doi: 10.1128/mmbr.00026-19 deformities and defects. SICOT J. 2017;3.
doi: 10.1051/sicotj/2016043
66. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial
biofilms: development, dispersal, and therapeutic strategies 78. Tsai CH, Hsu HC, Chen HY, et al. A preliminary study of
in the dawn of the postantibiotic era. Cold Spring Harb the novel antibiotic-loaded cement computer-aided design-
Perspect Med. 2013;3(4):a010306. articulating spacer for the treatment of periprosthetic knee
doi: 10.1101/cshperspect.a010306 infection. J Orthop Surg Res. 2019;14(1):136.
doi: 10.1186/s13018-019-1175-0
67. Oppenheimer-Shaanan Y, Steinberg N, Kolodkin-Gal I.
Small molecules are natural triggers for the disassembly of 79. Youssef RF, Spradling K, Yoon R, et al. Applications of three-
biofilms. Trends Microbiol. 2013;21(11):594-601. dimensional printing technology in urological practice. BJU
doi: 10.1016/j.tim.2013.08.005 Int. 2015;116(5):697-702.
doi: 10.1111/bju.13183
68. Solano C, Echeverz M, Lasa I. Biofilm dispersion and
quorum sensing. Curr Opin Microbiol. 2014;18:96-104. 80. He X, Yang S, Liu C, Xu T, Zhang X. Integrated wound
doi: 10.1016/j.mib.2014.02.008 recognition in bandages for intelligent treatment. Adv
Healthc Mater. 2020;9(22):e2000941.
69. Landini P, Antoniani D, Burgess JG, Nijland R. Molecular doi: 10.1002/adhm.202000941
mechanisms of compounds affecting bacterial biofilm
formation and dispersal. Appl Microbiol Biotechnol. 81. Alizadehgiashi M, Nemr CR, Chekini M, et al.
2010;86(3):813-823. Multifunctional 3D-printed wound dressings. ACS Nano.
doi: 10.1007/s00253-010-2468-8 2021;15(7):12375-12387.
doi: 10.1021/acsnano.1c04499
70. Choi YC, Morgenroth E. Monitoring biofilm detachment
under dynamic changes in shear stress using laser-based 82. Kim H, Lee D, Young Lee S, et al. Denture flask fabrication
particle size analysis and mass fractionation. Water Sci using fused deposition modeling three-dimensional
Technol. 2003;47(5):69-76. printing. J Prosthodont Res. 2020;64(2):231-234.
doi: 10.1016/j.jpor.2019.07.001
71. Horn H, Reiff H, Morgenroth E. Simulation of growth and 83. Li Y, Liu H, Wang C, et al. 3D printing titanium grid scaffold
detachment in biofilm systems under defined hydrodynamic facilitates osteogenesis in mandibular segmental defects.
conditions. Biotechnol Bioeng. 2003;81(5):607-617. NPJ Regen Med. 2023;8(1):38.
doi: 10.1002/bit.10503
doi: 10.1038/s41536-023-00308-0
72. Tsagkari E, Connelly S, Liu Z, McBride A, Sloan WT. The 84. Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D
role of shear dynamics in biofilm formation. NPJ Biofilms printing and its future directions. JACC Cardiovasc Imaging.
Microbiomes. 2022;8(1):33. 2017;10(2):171-184.
doi: 10.1038/s41522-022-00300-4 doi: 10.1016/j.jcmg.2016.12.001
73. Karatan E, Watnick P. Signals, regulatory networks, and 85. Shin CS, Cabrera FJ, Lee R, et al. 3D-bioprinted inflammation
materials that build and break bacterial biofilms. Microbiol modulating polymer scaffolds for soft tissue repair. Adv
Mol Biol Rev. 2009;73(2):310-347. Mater. 2021;33(4):e2003778.
doi: 10.1128/mmbr.00041-08 doi: 10.1002/adma.202003778
74. Xie K, Zhou Z, Guo Y, et al. Long-term prevention of 86. Olmos-Juste R, Olza S, Gabilondo N, Eceiza A. Tailor-made
bacterial infection and enhanced osteoinductivity of a 3D printed meshes of alginate-waterborne polyurethane
hybrid coating with selective silver toxicity. Adv Healthc as suitable implants for hernia repair. Macromol Biosci.
Mater. 2019;8(5):e1801465. 2022;22(9):e2200124.
doi: 10.1002/adhm.201801465 doi: 10.1002/mabi.202200124
75. Oun AA, Shankar S, Rhim JW. Multifunctional 87. Nisyrios T, Karygianni L, Fretwurst T, et al. High potential of
nanocellulose/metal and metal oxide nanoparticle hybrid bacterial adhesion on block bone graft materials. Materials
nanomaterials. Crit Rev Food Sci Nutr. 2020;60(3):435-460. (Basel). 2020;13(9).
doi: 10.1080/10408398.2018.1536966 doi: 10.3390/ma13092102
76. Zheng K, Yu Xc, Xu M, et al. Using 3D printing technology 88. Suresh MK, Biswas R, Biswas L. An update on recent
to manufacture personalized bone cement placeholder mold developments in the prevention and treatment of
for bone defect repair and reconstruction with infection: a Staphylococcus aureus biofilms. Int J Med Microbiol.
case report. Orthop Surg. 2023;15(10):2724-2729. 2019;309(1):1-12.
doi: 10.1111/os.13779 doi: 10.1016/j.ijmm.2018.11.002
Volume 10 Issue 4 (2024) 150 doi: 10.36922/ijb.2338

