Page 159 - IJB-10-4
P. 159
International Journal of Bioprinting 3D printing innovations against infection
89. Oliveira WF, Silva PMS, Silva RCS, et al. Staphylococcus 101. van der Heide D, Cidonio G, Stoddart MJ, D’Este M. 3D
aureus and Staphylococcus epidermidis infections on printing of inorganic-biopolymer composites for bone
implants. J Hosp Infect. 2018;98(2):111-117. regeneration. Biofabrication. 2022;14(4).
doi: 10.1016/j.jhin.2017.11.008 doi: 10.1088/1758-5090/ac8cb2
90. Hogan S, Stevens NT, Humphreys H, O’Gara JP, O’Neill 102. Li J, Li L, Zhou J, et al. 3D printed dual-functional biomaterial
E. Current and future approaches to the prevention with self-assembly micro-nano surface and enriched nano
and treatment of staphylococcal medical device-related argentum for antibacterial and bone regeneration. Appl
infections. Curr Pharm Des. 2015;21(1):100-113. Mater Today. 2019;17:206-215.
doi: 10.2174/1381612820666140905123900 doi: 10.1016/j.apmt.2019.06.012
91. Arciola CR, Campoccia D, Ehrlich GD, Montanaro L. 103. Feng X, Ma L, Liang H, et al. Osteointegration of 3D-printed
Biofilm-based implant infections in orthopaedics. Adv Exp fully porous polyetheretherketone scaffolds with different
Med Biol. 2015;830:29-46. pore sizes. ACS Omega. 2020;5(41):26655-26666.
doi: 10.1007/978-3-319-11038-7_2 doi: 10.1021/acsomega.0c03489
92. Montanaro L, Speziale P, Campoccia D, et al. Scenery of 104. Li Z, He D, Guo B, et al. Self-promoted electroactive
Staphylococcus implant infections in orthopedics. Future biomimetic mineralized scaffolds for bacteria-infected bone
Microbiol. 2011;6(11):1329-1349. regeneration. Nat Commun. 2023;14(1):6963.
doi: 10.2217/fmb.11.117 doi: 10.1038/s41467-023-42598-4
93. Ronin D, Boyer J, Alban N, Natoli RM, Johnson A, Kjellerup 105. Hadrup N, Sharma AK, Jacobsen NR, Loeschner K.
BV. Current and novel diagnostics for orthopedic implant Distribution, metabolism, excretion, and toxicity of implanted
biofilm infections: a review. APMIS. 2022;130(2):59-81. silver: a review. Drug Chem Toxicol. 2022;45(5):2388-2397.
doi: 10.1111/apm.13197 doi: 10.1080/01480545.2021.1950167
94. Ghasemi F, Jahani A, Moradi A, Ebrahimzadeh MH, 106. Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions,
Jirofti N. Different modification methods of poly methyl metallic silver, and silver nanoparticle materials after in
methacrylate (PMMA) bone cement for orthopedic surgery vivo dermal and mucosal surface exposure: a review. Regul
applications. Arch Bone Jt Surg. 2023;11(8):485-492. Toxicol Pharmacol. 2018;98:257-267.
doi: 10.22038/abjs.2023.71289.3330 doi: 10.1016/j.yrtph.2018.08.007
95. Kim TWB, Lopez OJ, Sharkey JP, Marden KR, Murshed 107. Shimazaki T, Miyamoto H, Ando Y, et al. In vivo antibacterial
MR, Ranganathan SI. 3D printed liner for treatment of and silver-releasing properties of novel thermal sprayed
periprosthetic joint infections. Med Hypotheses. 2017;102: silver-containing hydroxyapatite coating. J Biomed Mater
65-68. Res B Appl Biomater. 2010;92(2):386-389.
doi: 10.1016/j.mehy.2017.03.014 doi: 10.1002/jbm.b.31526
96. Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum 108. Akiyama T, Miyamoto H, Yonekura Y, et al. Silver oxide-
HA. Recent advances in the evaluation of antimicrobial containing hydroxyapatite coating has in vivo antibacterial
materials for resolution of orthopedic implant-associated activity in the rat tibia. J Orthop Res. 2013;31(8):1195-1200.
infections in vivo. ACS Infect Dis. 2021;7(12):3125-3160. doi: 10.1002/jor.22357
doi: 10.1021/acsinfecdis.1c00465
109. Yang Y, Chu L, Yang S, et al. Dual-functional 3D-printed
97. Inzana JA, Schwarz EM, Kates SL, Awad HA. Biomaterials composite scaffold for inhibiting bacterial infection and
approaches to treating implant-associated osteomyelitis. promoting bone regeneration in infected bone defect
Biomaterials. 2016;81:58-71. models. Acta Biomater. 2018;79:265-275.
doi: 10.1016/j.biomaterials.2015.12.012 doi: 10.1016/j.actbio.2018.08.015
98. Dubey A, Vahabi H, Kumaravel V. Antimicrobial and 110. Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional
biodegradable 3D printed scaffolds for orthopedic (3D) printed scaffold and material selection for bone repair.
infections. ACS Biomater Sci Eng. 2023;9(7):4020-4044. Acta Biomater. 2019;84:16-33.
doi: 10.1021/acsbiomaterials.3c00115 doi: 10.1016/j.actbio.2018.11.039
99. Yuste I, Luciano FC, Anaya BJ, et al. Engineering 3D-printed 111. Correia TR, Figueira DR, de Sá KD, et al. 3D printed scaffolds
advanced healthcare materials for periprosthetic joint with bactericidal activity aimed for bone tissue regeneration.
infections. Antibiotics (Basel). 2023;12(8). Int J Biol Macromol. 2016;93(Pt B):1432-1445.
doi: 10.3390/antibiotics12081229 doi: 10.1016/j.ijbiomac.2016.06.004
100. Freeman FE, Burdis R, Kelly DJ. Printing new bones: 112. Deng L, Deng Y, Xie K. AgNPs-decorated 3D printed PEEK
from print-and-implant devices to bioprinted bone organ implant for infection control and bone repair. Colloids Surf
precursors. Trends Mol Med. 2021;27(7):700-711. B Biointerfaces. 2017;160:483-492.
doi: 10.1016/j.molmed.2021.05.001 doi: 10.1016/j.colsurfb.2017.09.061
Volume 10 Issue 4 (2024) 151 doi: 10.36922/ijb.2338

