Page 162 - IJB-10-4
P. 162
International Journal of Bioprinting 3D printing innovations against infection
157. Kowalczuk D, Ginalska G, Piersiak T, Miazga-Karska M. 168. Wu Z, Hong Y. Combination of the silver-ethylene
Prevention of biofilm formation on urinary catheters: interaction and 3D printing to develop antibacterial
comparison of the sparfloxacin-treated long-term superporous hydrogels for wound management. ACS Appl
antimicrobial catheters with silver-coated ones. J Biomed Mater Interfaces. 2019;11(37):33734-33747.
Mater Res B Appl Biomater. 2012;100(7):1874-1882. doi: 10.1021/acsami.9b14090
doi: 10.1002/jbm.b.32755
169. Huang D, Cheng Y, Chen G, Zhao Y. 3D-printed janus
158. Mathew E, Domínguez-Robles J, Stewart SA, et al. Fused piezoelectric patches for sonodynamic bacteria elimination
deposition modeling as an effective tool for anti-infective and wound healing. Research (Wash D C). 2023;6:0022.
dialysis catheter fabrication. ACS Biomater Sci Eng. doi: 10.34133/research.0022
2019;5(11):6300-6310.
doi: 10.1021/acsbiomaterials.9b01185 170. Zhao Y, Li Z, Song S, et al. Skin‐inspired antibacterial
conductive hydrogels for epidermal sensors and diabetic
159. Archana M, Rubini D, Dharshini KP, et al. Development of foot wound dressings. Adv Funct Mater. 2019;29(31).
an anti-infective urinary catheter composed of polyvinyl doi: 10.1002/adfm.201901474
alcohol/sodium alginate/methylcellulose/polyethylene
glycol by using a pressure-assisted 3D-printing technique. 171. Chen B, Huang L, Ma R, Luo Y. 3D printed hollow channeled
Int J Biol Macromol. 2023;249:126029. hydrogel scaffolds with antibacterial and wound healing
doi: 10.1016/j.ijbiomac.2023.126029 activities. Biomed Mater. 2023;18(4).
doi: 10.1088/1748-605X/acd977
160. Borkow G, Gabbay J. Putting copper into action: copper-
impregnated products with potent biocidal activities. FASEB 172. Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri
J. 2004;18(14):1728-1730. SM, et al. Nanomedicine and advanced technologies for
doi: 10.1096/fj.04-2029fje burns: preventing infection and facilitating wound healing.
Adv Drug Deliv Rev. 2018;123:33-64.
161. Sriubas M, Bockute K, Palevicius P, et al. Antibacterial doi: 10.1016/j.addr.2017.08.001
activity of silver and gold particles formed on titania thin
films. Nanomaterials (Basel). 2022;12(7). 173. Fang W, Yang M, Liu M, et al. Review on additives in
doi: 10.3390/nano12071190 hydrogels for 3D bioprinting of regenerative medicine: from
mechanism to methodology. Pharmaceutics. 2023;15(6).
162. Kyser AJ, Mahmoud MY, Johnson NT, et al. Development doi: 10.3390/pharmaceutics15061700
and characterization of lactobacillus rhamnosus-containing
bioprints for application to catheter-associated urinary tract 174. Teoh JH, Mozhi A, Sunil V, Tay SM, Fuh J, Wang CH. 3D
infections. ACS Biomater Sci Eng. 2023;9(7):4277-4287. printing personalized, photocrosslinkable hydrogel wound
doi: 10.1021/acsbiomaterials.3c00210 dressings for the treatment of thermal burns. Adv Funct
Mater. 2021;31(48).
163. Carlsson S, Weitzberg E, Wiklund P, Lundberg JO. doi: 10.1002/adfm.202105932
Intravesical nitric oxide delivery for prevention of catheter-
associated urinary tract infections. Antimicrob Agents 175. Lee W, Debasitis JC, Lee VK, et al. Multi-layered culture
Chemother. 2005;49(6):2352-2355. of human skin fibroblasts and keratinocytes through
doi: 10.1128/aac.49.6.2352-2355.2005 three-dimensional freeform fabrication. Biomaterials.
2009;30(8):1587-1595.
164. Levering V, Wang Q, Shivapooja P, Zhao X, López GP. Soft doi: 10.1016/j.biomaterials.2008.12.009
robotic concepts in catheter design: an on-demand fouling-
release urinary catheter. Adv Healthc Mater. 2014;3(10): 176. Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL.
1588-1596. 3D bioprinting of functional human skin: production and in
doi: 10.1002/adhm.201400035 vivo analysis. Biofabrication. 2016;9(1):015006.
doi: 10.1088/1758-5090/9/1/015006
165. Li M, Xia W, Khoong YM, et al. Smart and versatile
biomaterials for cutaneous wound healing. Biomater Res. 177. Moynihan P, Petersen PE. Diet, nutrition and the prevention
2023;27(1):87. of dental diseases. Public Health Nutr. 2004;7(1a):201-226.
doi: 10.1186/s40824-023-00426-2 doi: 10.1079/phn2003589
166. Albanna M, Binder KW, Murphy SV, et al. In situ 178. Ma Y, Xie L, Yang B, Tian W. Three-dimensional printing
bioprinting of autologous skin cells accelerates wound biotechnology for the regeneration of the tooth and tooth-
healing of extensive excisional full-thickness wounds. Sci supporting tissues. Biotechnol Bioeng. 2019;116(2):452-468.
Rep. 2019;9(1):1856. doi: 10.1002/bit.26882
doi: 10.1038/s41598-018-38366-w
179. Mai HN, Hyun DC, Park JH, Kim DY, Lee SM, Lee DH.
167. Fang W, Yang M, Wang L, et al. Hydrogels for 3D bioprinting Antibacterial drug-release polydimethylsiloxane coating
in tissue engineering and regenerative medicine: current for 3D-printing dental polymer: surface alterations and
progress and challenges. Int J Bioprint. 2023;9(5):759. antimicrobial effects. Pharmaceuticals (Basel). 2020;13(10).
doi: 10.18063/ijb.759 doi: 10.3390/ph13100304
Volume 10 Issue 4 (2024) 154 doi: 10.36922/ijb.2338

