Page 162 - IJB-10-4
P. 162

International Journal of Bioprinting                                 3D printing innovations against infection




            157. Kowalczuk D, Ginalska G, Piersiak T, Miazga-Karska M.   168. Wu Z, Hong Y. Combination of the silver-ethylene
               Prevention of biofilm formation on urinary catheters:   interaction and 3D printing to develop antibacterial
               comparison  of  the  sparfloxacin-treated  long-term  superporous hydrogels for wound management. ACS Appl
               antimicrobial catheters with silver-coated ones.  J Biomed   Mater Interfaces. 2019;11(37):33734-33747.
               Mater Res B Appl Biomater. 2012;100(7):1874-1882.     doi: 10.1021/acsami.9b14090
               doi: 10.1002/jbm.b.32755
                                                               169. Huang D, Cheng Y, Chen G, Zhao Y. 3D-printed janus
            158. Mathew E, Domínguez-Robles J, Stewart SA, et al. Fused   piezoelectric patches for sonodynamic bacteria elimination
               deposition modeling as an effective tool for anti-infective   and wound healing. Research (Wash D C). 2023;6:0022.
               dialysis catheter fabrication.  ACS Biomater Sci Eng.      doi: 10.34133/research.0022
               2019;5(11):6300-6310.
               doi: 10.1021/acsbiomaterials.9b01185            170. Zhao Y, Li Z, Song S, et al. Skin‐inspired antibacterial
                                                                  conductive  hydrogels  for  epidermal  sensors  and diabetic
            159. Archana M, Rubini D, Dharshini KP, et al. Development of   foot wound dressings. Adv Funct Mater. 2019;29(31).
               an anti-infective urinary catheter composed of polyvinyl      doi: 10.1002/adfm.201901474
               alcohol/sodium alginate/methylcellulose/polyethylene
               glycol by using a pressure-assisted 3D-printing technique.   171. Chen B, Huang L, Ma R, Luo Y. 3D printed hollow channeled
               Int J Biol Macromol. 2023;249:126029.              hydrogel scaffolds with antibacterial and wound healing
               doi: 10.1016/j.ijbiomac.2023.126029                activities. Biomed Mater. 2023;18(4).
                                                                  doi: 10.1088/1748-605X/acd977
            160. Borkow G, Gabbay J. Putting copper into action: copper-
               impregnated products with potent biocidal activities. FASEB   172. Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri
               J. 2004;18(14):1728-1730.                          SM, et al. Nanomedicine and advanced technologies for
               doi: 10.1096/fj.04-2029fje                         burns: preventing infection and facilitating wound healing.
                                                                  Adv Drug Deliv Rev. 2018;123:33-64.
            161. Sriubas M, Bockute K, Palevicius P, et al. Antibacterial      doi: 10.1016/j.addr.2017.08.001
               activity of silver and gold particles formed on titania thin
               films. Nanomaterials (Basel). 2022;12(7).       173. Fang  W,  Yang  M,  Liu  M,  et  al.  Review  on  additives  in
               doi: 10.3390/nano12071190                          hydrogels for 3D bioprinting of regenerative medicine: from
                                                                  mechanism to methodology. Pharmaceutics. 2023;15(6).
            162. Kyser AJ, Mahmoud MY, Johnson NT, et al. Development      doi: 10.3390/pharmaceutics15061700
               and characterization of lactobacillus rhamnosus-containing
               bioprints for application to catheter-associated urinary tract   174. Teoh JH, Mozhi A, Sunil V, Tay SM, Fuh J, Wang CH. 3D
               infections. ACS Biomater Sci Eng. 2023;9(7):4277-4287.  printing personalized, photocrosslinkable hydrogel wound
               doi: 10.1021/acsbiomaterials.3c00210               dressings for the treatment of thermal burns.  Adv Funct
                                                                  Mater. 2021;31(48).
            163. Carlsson S, Weitzberg E, Wiklund P, Lundberg JO.      doi: 10.1002/adfm.202105932
               Intravesical nitric oxide delivery for prevention of catheter-
               associated urinary tract infections.  Antimicrob Agents   175. Lee W, Debasitis JC, Lee VK, et al. Multi-layered culture
               Chemother. 2005;49(6):2352-2355.                   of human skin fibroblasts and keratinocytes through
               doi: 10.1128/aac.49.6.2352-2355.2005               three-dimensional freeform fabrication.  Biomaterials.
                                                                  2009;30(8):1587-1595.
            164.  Levering V, Wang Q, Shivapooja P, Zhao X, López GP. Soft      doi: 10.1016/j.biomaterials.2008.12.009
               robotic concepts in catheter design: an on-demand fouling-
               release urinary catheter.  Adv  Healthc  Mater.  2014;3(10):   176. Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL.
               1588-1596.                                         3D bioprinting of functional human skin: production and in
               doi: 10.1002/adhm.201400035                        vivo analysis. Biofabrication. 2016;9(1):015006.
                                                                  doi: 10.1088/1758-5090/9/1/015006
            165. Li M, Xia W, Khoong YM, et al. Smart and versatile
               biomaterials for cutaneous wound healing.  Biomater Res.   177. Moynihan P, Petersen PE. Diet, nutrition and the prevention
               2023;27(1):87.                                     of dental diseases. Public Health Nutr. 2004;7(1a):201-226.
               doi: 10.1186/s40824-023-00426-2                    doi: 10.1079/phn2003589
            166. Albanna M, Binder KW, Murphy SV, et al. In situ   178. Ma Y, Xie L, Yang B, Tian W. Three-dimensional printing
               bioprinting of autologous skin cells accelerates wound   biotechnology for the regeneration of the tooth and tooth-
               healing of extensive excisional full-thickness wounds.  Sci   supporting tissues. Biotechnol Bioeng. 2019;116(2):452-468.
               Rep. 2019;9(1):1856.                               doi: 10.1002/bit.26882
               doi: 10.1038/s41598-018-38366-w
                                                               179. Mai HN, Hyun DC, Park JH, Kim DY, Lee SM, Lee DH.
            167. Fang W, Yang M, Wang L, et al. Hydrogels for 3D bioprinting   Antibacterial drug-release polydimethylsiloxane coating
               in tissue engineering and regenerative medicine: current   for 3D-printing dental polymer: surface alterations and
               progress and challenges. Int J Bioprint. 2023;9(5):759.  antimicrobial effects. Pharmaceuticals (Basel). 2020;13(10).
               doi: 10.18063/ijb.759                              doi: 10.3390/ph13100304


            Volume 10 Issue 4 (2024)                       154                                doi: 10.36922/ijb.2338
   157   158   159   160   161   162   163   164   165   166   167