Page 160 - IJB-10-4
P. 160

International Journal of Bioprinting                                 3D printing innovations against infection




            113. Turner TM, Urban RM, Gitelis S, Kuo KN, Andersson GB.      doi: 10.1016/j.actbio.2018.04.014
               Radiographic and histologic assessment of calcium sulfate in   124. Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small joint
               experimental animal models and clinical use as a resorbable   organoids 3D bioprinting: construction strategy and
               bone-graft substitute, a bone-graft expander, and a method   application. Small. 2023:e2302506.
               for local antibiotic delivery. One institution’s experience. J
               Bone Joint Surg Am. 2001;83-A Suppl 2(Pt 1):8-18.     doi: 10.1002/smll.202302506
               doi: 10.2106/00004623-200100021-00003           125. Messaoudi O, Henrionnet C, Bourge K, Loeuille D, Gillet P,
                                                                  Pinzano A. Stem cells and extrusion 3D printing for hyaline
            114. Logoluso N, Drago L, Gallazzi E, George DA, Morelli
               I, Romanò CL. Calcium-based, antibiotic-loaded bone   cartilage engineering. Cells. 2020;10(1).
               substitute as an implant coating: a pilot clinical study. J Bone      doi: 10.3390/cells10010002
               Jt Infect. 2016;1:59-64.                        126. Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application
               doi: 10.7150/jbji.17586                            and development of 3D  bioprinting in  cartilage  tissue
            115. Jain A, Bansal KK, Tiwari A, Rosling A, Rosenholm JM. Role   engineering. Biomater Sci. 2022;10(19):5430-5458.
               of polymers in 3D printing technology for drug delivery - an      doi: 10.1039/d2bm00709f
               overview. Curr Pharm Des. 2018;24(42):4979-4990.  127. Li G, Lai Z, Shan A. Advances of antimicrobial peptide-
               doi: 10.2174/1381612825666181226160040             based biomaterials for the treatment of bacterial infections.
            116. Warsi MH, Yusuf M, Al Robaian M, Khan M, Muheem   Adv Sci (Weinh). 2023;10(11):e2206602.
               A, Khan S. 3D printing methods for pharmaceutical      doi: 10.1002/advs.202206602
               manufacturing: opportunity and challenges.  Curr Pharm   128. Rai A, Ferrão R, Palma P, et al. Antimicrobial peptide-based
               Des. 2018;24(42):4949-4956.                        materials: opportunities and challenges.  J Mater Chem B.
               doi: 10.2174/1381612825666181206121701             2022;10(14):2384-2429.
            117. Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad      doi: 10.1039/d1tb02617h
               HA. 3D printed bioceramics for dual antibiotic delivery   129. Cometta S, Bock N, Suresh S, Dargaville TR, Hutmacher
               to treat implant-associated bone infection. Eur Cell Mater.   DW. Antibacterial albumin-tannic acid coatings for scaffold-
               2015;30:232-247.                                   guided breast reconstruction.  Front Bioeng Biotechnol.
               doi: 10.22203/ecm.v030a16                          2021;9:638577.
            118. Zhou Z, Yao Q, Li L, et al. Antimicrobial activity of      doi: 10.3389/fbioe.2021.638577
               3D-printed poly(ε-caprolactone) (PCL) composite scaffolds   130. Cometta S, Jones RT, Juárez-Saldivar A, et al. Melimine-
               presenting vancomycin-loaded polylactic acid-glycolic acid   modified 3D-printed polycaprolactone scaffolds for the
               (PLGA) microspheres. Med Sci Monit. 2018;24:6934-6945.  prevention of biofilm-related biomaterial infections.  ACS
               doi: 10.12659/msm.911770                           Nano. 2022;16(10):16497-16512.
            119. Sun F, Sun X, Wang H, et al. Application of 3D-printed,      doi: 10.1021/acsnano.2c05812
               PLGA-based scaffolds in bone tissue engineering. Int J Mol   131. Fischer  NG, Chen  X, Astleford-Hopper  K, et  al.
               Sci. 2022;23(10).                                  Antimicrobial and enzyme-responsive multi-peptide
               doi: 10.3390/ijms23105831                          surfaces for bone-anchored devices. Mater Sci Eng C Mater
            120. Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M,   Biol Appl. 2021;125:112108.
               Nurchi VM. The essential metals for humans: a brief      doi: 10.1016/j.msec.2021.112108
               overview. J Inorg Biochem. 2019;195:120-129.    132. Zhang S, Zhou X, Liu T, Huang Y, Li J. The effects of peptide
               doi: 10.1016/j.jinorgbio.2019.03.013               Mel4-coated titanium plates on infection rabbits after
            121. Tapiero H, Townsend DM, Tew KD. Trace elements in human   internal fixation of open fractures.  Arch Orthop Trauma
               physiology and  pathology. Copper.  Biomed Pharmacother.   Surg. 2022;142(5):729-734.
               2003;57(9):386-398.                                doi: 10.1007/s00402-020-03694-y
               doi: 10.1016/s0753-3322(03)00012-x              133. Feneley RC, Hopley IB, Wells PN. Urinary catheters: history,
            122. Tripathi A, Saravanan S, Pattnaik S, Moorthi A, Partridge   current status, adverse events and research agenda. J Med
               NC, Selvamurugan N. Bio-composite scaffolds containing   Eng Technol. 2015;39(8):459-470.
               chitosan/nano-hydroxyapatite/nano-copper-zinc for bone      doi: 10.3109/03091902.2015.1085600
               tissue engineering. Int J Biol Macromol. 2012;50(1):294-299.  134. Flores-Mireles A, Hreha TN, Hunstad DA. Pathophysiology,
               doi: 10.1016/j.ijbiomac.2011.11.013
                                                                  treatment, and prevention of catheter-associated urinary
            123. Liu Y, Li T, Ma H, et al. 3D-printed scaffolds with bioactive   tract infection.  Top Spinal Cord Inj Rehabil.  2019;25(3):
               elements-induced photothermal effect for bone tumor   228-240.
               therapy. Acta Biomater. 2018;73:531-546.           doi: 10.1310/sci2503-228




            Volume 10 Issue 4 (2024)                       152                                doi: 10.36922/ijb.2338
   155   156   157   158   159   160   161   162   163   164   165