Page 160 - IJB-10-4
P. 160
International Journal of Bioprinting 3D printing innovations against infection
113. Turner TM, Urban RM, Gitelis S, Kuo KN, Andersson GB. doi: 10.1016/j.actbio.2018.04.014
Radiographic and histologic assessment of calcium sulfate in 124. Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small joint
experimental animal models and clinical use as a resorbable organoids 3D bioprinting: construction strategy and
bone-graft substitute, a bone-graft expander, and a method application. Small. 2023:e2302506.
for local antibiotic delivery. One institution’s experience. J
Bone Joint Surg Am. 2001;83-A Suppl 2(Pt 1):8-18. doi: 10.1002/smll.202302506
doi: 10.2106/00004623-200100021-00003 125. Messaoudi O, Henrionnet C, Bourge K, Loeuille D, Gillet P,
Pinzano A. Stem cells and extrusion 3D printing for hyaline
114. Logoluso N, Drago L, Gallazzi E, George DA, Morelli
I, Romanò CL. Calcium-based, antibiotic-loaded bone cartilage engineering. Cells. 2020;10(1).
substitute as an implant coating: a pilot clinical study. J Bone doi: 10.3390/cells10010002
Jt Infect. 2016;1:59-64. 126. Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application
doi: 10.7150/jbji.17586 and development of 3D bioprinting in cartilage tissue
115. Jain A, Bansal KK, Tiwari A, Rosling A, Rosenholm JM. Role engineering. Biomater Sci. 2022;10(19):5430-5458.
of polymers in 3D printing technology for drug delivery - an doi: 10.1039/d2bm00709f
overview. Curr Pharm Des. 2018;24(42):4979-4990. 127. Li G, Lai Z, Shan A. Advances of antimicrobial peptide-
doi: 10.2174/1381612825666181226160040 based biomaterials for the treatment of bacterial infections.
116. Warsi MH, Yusuf M, Al Robaian M, Khan M, Muheem Adv Sci (Weinh). 2023;10(11):e2206602.
A, Khan S. 3D printing methods for pharmaceutical doi: 10.1002/advs.202206602
manufacturing: opportunity and challenges. Curr Pharm 128. Rai A, Ferrão R, Palma P, et al. Antimicrobial peptide-based
Des. 2018;24(42):4949-4956. materials: opportunities and challenges. J Mater Chem B.
doi: 10.2174/1381612825666181206121701 2022;10(14):2384-2429.
117. Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad doi: 10.1039/d1tb02617h
HA. 3D printed bioceramics for dual antibiotic delivery 129. Cometta S, Bock N, Suresh S, Dargaville TR, Hutmacher
to treat implant-associated bone infection. Eur Cell Mater. DW. Antibacterial albumin-tannic acid coatings for scaffold-
2015;30:232-247. guided breast reconstruction. Front Bioeng Biotechnol.
doi: 10.22203/ecm.v030a16 2021;9:638577.
118. Zhou Z, Yao Q, Li L, et al. Antimicrobial activity of doi: 10.3389/fbioe.2021.638577
3D-printed poly(ε-caprolactone) (PCL) composite scaffolds 130. Cometta S, Jones RT, Juárez-Saldivar A, et al. Melimine-
presenting vancomycin-loaded polylactic acid-glycolic acid modified 3D-printed polycaprolactone scaffolds for the
(PLGA) microspheres. Med Sci Monit. 2018;24:6934-6945. prevention of biofilm-related biomaterial infections. ACS
doi: 10.12659/msm.911770 Nano. 2022;16(10):16497-16512.
119. Sun F, Sun X, Wang H, et al. Application of 3D-printed, doi: 10.1021/acsnano.2c05812
PLGA-based scaffolds in bone tissue engineering. Int J Mol 131. Fischer NG, Chen X, Astleford-Hopper K, et al.
Sci. 2022;23(10). Antimicrobial and enzyme-responsive multi-peptide
doi: 10.3390/ijms23105831 surfaces for bone-anchored devices. Mater Sci Eng C Mater
120. Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Biol Appl. 2021;125:112108.
Nurchi VM. The essential metals for humans: a brief doi: 10.1016/j.msec.2021.112108
overview. J Inorg Biochem. 2019;195:120-129. 132. Zhang S, Zhou X, Liu T, Huang Y, Li J. The effects of peptide
doi: 10.1016/j.jinorgbio.2019.03.013 Mel4-coated titanium plates on infection rabbits after
121. Tapiero H, Townsend DM, Tew KD. Trace elements in human internal fixation of open fractures. Arch Orthop Trauma
physiology and pathology. Copper. Biomed Pharmacother. Surg. 2022;142(5):729-734.
2003;57(9):386-398. doi: 10.1007/s00402-020-03694-y
doi: 10.1016/s0753-3322(03)00012-x 133. Feneley RC, Hopley IB, Wells PN. Urinary catheters: history,
122. Tripathi A, Saravanan S, Pattnaik S, Moorthi A, Partridge current status, adverse events and research agenda. J Med
NC, Selvamurugan N. Bio-composite scaffolds containing Eng Technol. 2015;39(8):459-470.
chitosan/nano-hydroxyapatite/nano-copper-zinc for bone doi: 10.3109/03091902.2015.1085600
tissue engineering. Int J Biol Macromol. 2012;50(1):294-299. 134. Flores-Mireles A, Hreha TN, Hunstad DA. Pathophysiology,
doi: 10.1016/j.ijbiomac.2011.11.013
treatment, and prevention of catheter-associated urinary
123. Liu Y, Li T, Ma H, et al. 3D-printed scaffolds with bioactive tract infection. Top Spinal Cord Inj Rehabil. 2019;25(3):
elements-induced photothermal effect for bone tumor 228-240.
therapy. Acta Biomater. 2018;73:531-546. doi: 10.1310/sci2503-228
Volume 10 Issue 4 (2024) 152 doi: 10.36922/ijb.2338

