Page 392 - IJB-10-4
P. 392

International Journal of Bioprinting                                   3D cartilage induction and monitoring




            16.  Park S, Krishnan R, Nicoll SB, Ateshian GA. Cartilage   27.  Zhang H, Hollister S. Comparison of bone marrow stromal
               interstitial fluid load support in unconfined compression. J   cell behaviors on poly(caprolactone) with or without
               Biomech. 2003;36(12):1785-1796.                    surface modification: studies on cell adhesion, survival
               doi: 10.1016/S0021-9290(03)00231-8                 and proliferation.  J Biomater  Sci Polym Ed. 2009;20(14):
                                                                  1975-1993.
            17.  Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep
               and stress relaxation of articular cartilage in compression:      doi: 10.1163/156856208X396074
               theory and experiments. J Biomech Eng. 1980;102(1):73-84.  28.  Hinnemo M, Zhao J, Ahlberg P, et al. On monolayer
               doi: 10.1115/1.3138202                             formation of pyrenebutyric acid on graphene.  Langmuir.
                                                                  2017;33(15):3588-3593.
            18.  Armstrong CG, Lai WM, Mow VC. An analysis of the
               unconfined compression of articular cartilage.  J Biomech      doi: 10.1021/acs.langmuir.6b04237
               Eng. 1984;106(2):165-173.                       29.  Douglas T, Haugen HJ. Coating of polyurethane scaffolds
               doi: 10.1115/1.3138475                             with collagen: Comparison of coating and cross-linking
                                                                  techniques. J Mater Sci Mater Med. 2008;19(8):2713-2719.
            19.  Tatsumura M, Sakane M, Ochiai N, Mizuno S. Off-loading
               of cyclic hydrostatic pressure promotes production of      doi: 10.1007/s10856-008-3393-6
               extracellular matrix by chondrocytes. Cells Tissues Organs.   30.  Vinardell T, Sheehy EJ, Buckley CT, Kelly DJ. A comparison
               2013;198(6):405-413.                               of the functionality and in vivo phenotypic stability of
               doi: 10.1159/000360156                             cartilaginous tissues engineered from different stem cell
                                                                  sources. Tissue Eng Part A. 2012;18(11-12):1161-1170.
            20.  Tan AR, Dong EY, Andry JP, Bulinski JC, Ateshian GA,
               Hung CT. Coculture of engineered cartilage with primary      doi: 10.1089/ten.TEA.2011.0544
               chondrocytes induces expedited growth. Clin Orthop Relat   31.  Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics,
               Res. 2011;469(10): 2735-2743.                      self‐renewal, and the osteogenic potential of purified human
               doi: 10.1007/s11999-011-1772-7                     mesenchymal  stem  cells  during  extensive  subcultivation
                                                                  and following cryopreservation. J Cell Biochem. 1997;64(2):
            21.  Sampat SR, O’Connell GD, Fong JV, Alegre-Aguarón E,
               Ateshian GA, Hung CT. Growth factor priming of synovium-  278-294.
               derived stem cells for cartilage tissue engineering. Tissue Eng      doi: 10.1002/(sici)1097-4644(199702)64:2<278::aid-
               Part A. 2011;17(17-18):2259-2265.                  jcb11>3.0.co;2-f
               doi: 10.1089/ten.tea.2011.0155                  32.  Jimenez-Puerta GJ, Marchal JA, López-Ruiz E, Gálvez-
                                                                  Martín P. Role of mesenchymal stromal cells as therapeutic
            22.  Rad MR, Eghbal MJ, Nadjmi N, et al. Polymeric scaffolds in
               tissue engineering: a literature review. J Biomed Mater Res B   agents: potential mechanisms of action and implications in
               Appl Biomater. 2015;105(2):431-459.                their clinical use. J Clin Med. 2020;9(2):445.
               doi: 10.1002/jbm.b.33547                           doi: 10.3390/jcm9020445
                                                               33.  López-Ruiz E, Perán M, Cobo-Molinos J, et al. Chondrocytes
            23.  Jang TS, Park SJ, Lee JE, et al. Topography-supported
               nanoarchitectonics of hybrid scaffold for systematically   extract from patients with osteoarthritis induces
               modulated  bone  regeneration  and  remodeling.  Adv Funct   chondrogenesis in infrapatellar fat pad-derived stem cells.
               Mater. 2022;32(51):2206863.                        Osteoarthritis Cartilage. 2013;21(1):246-258.
               doi: 10.1002/adfm.202206863                        doi: 10.1016/j.joca.2012.10.007
                                                               34.  Ghosh S, Laha M, Mondal S, Sengupta S, Kaplan DL. In vitro
            24.  Zhou X, Zhou G, Junka R, et al. Fabrication of polylactic
               acid (PLA)-based porous scaffold through the combination   model of mesenchymal condensation during chondrogenic
               of traditional bio-fabrication and 3D printing technology   development. Biomaterials. 2009;30(33):6530-6540.
               for bone regeneration.  Colloids Surf B Biointerfaces.      doi: 10.1016/j.biomaterials.2009.08.019
               2021;197:111420.                                35.  Juhász T, Matta C, Somogyi C, et al. Mechanical loading
               doi: 10.1016/j.colsurfb.2020.111420                stimulates chondrogenesis via the PKA/CREB-Sox9 and
                                                                  PP2A pathways in chicken micromass cultures. Cell Signal.
            25.  Chocarro-Wrona C, de Vicente J, Antich C, et al. Validation
               of the 1,4-butanediol thermoplastic polyurethane as a novel   2014;26(3):468-482.
               material for  3D bioprinting applications. Bioeng Transl Med.      doi: 10.1016/j.cellsig.2013.12.001
               2021;6(1):e10192.                               36.  Wang Y, Huang Z, Nayak PS, et al. Strain-induced
               doi: 10.1002/btm2.10192                            differentiation of fetal type II epithelial cells is mediated via
                                                                  integrin α6β1-ADAM17/TACE signaling pathway.  J Biol
            26.  Chen C, Bang S, Cho Y, et al. Research trends in biomimetic
               medical materials for tissue engineering: 3D bioprinting,   Chem. 2013;288(35):25646-25657.
               surface modification, nano/micro-technology and clinical      doi: 10.1074/jbc.M113.473777
               aspects in tissue engineering of cartilage and bone. Biomater   37.  Ross TD, Coon BG, Yun S, et al. Integrins in mechanotrans-
               Res. 2016;20(1):10.                                duction. Curr Opin Cell Biol. 2013;25(5):613-618.
               doi: 10.1186/s40824-016-0057-3                     doi: 10.1016/j.ceb.2013.05.006

            Volume 10 Issue 4 (2024)                       384                                doi: 10.36922/ijb.3389
   387   388   389   390   391   392   393   394   395   396   397