Page 393 - IJB-10-4
P. 393

International Journal of Bioprinting                                   3D cartilage induction and monitoring




            38.  Xu X, Liu S, Liu H, et al. Piezo channels: awesome mecha-  49.  Poon C. Measuring the density and viscosity of culture media
               nosensitive structures in cellular mechanotransduction and   for optimized computational fluid dynamics analysis of in
               their role in bone. Int J Mol Sci. 2021;22(12):6429.  vitro devices. J Mech Behav Biomed Mater. 2022;126:105024.
               doi: 10.3390/ijms22126429                          doi: 10.1016/j.jmbbm.2021.105024
            39.  Agarwal P, Lee HP, Smeriglio P, et al. A dysfunctional TRPV4–  50.  Schlichting H, Gersten K. Boundary-Layer Theory. Springer
               GSK3β pathway prevents osteoarthritic chondrocytes from   Berlin Heidelberg; 2017.
               sensing changes in extracellular matrix viscoelasticity. Nat   https://books.google.es/books?id=bOUyDQAAQBAJ
               Biomed Eng. 2021;5(12):1472-1484.               51.  Bancroft GN, Sikavitsas VI, Van Den Dolder J, et al. Fluid
               doi: 10.1038/s41551-021-00691-3                    flow increases mineralized matrix deposition in 3D perfusion
            40.  Subramanian A, Budhiraja G, Sahu N. Chondrocyte   culture of marrow stromal osteoblasts in a dose-dependent
               primary cilium is mechanosensitive and responds to low-  manner. Proc Natl Acad Sci U S A. 2002;99(20):12600-12605.
               intensity-ultrasound by altering its length and orientation.      doi: 10.1073/pnas.202296599
               Int J Biochem Cell Biol. 2017;91(Pt A):60-64.   52.  Antoniou A, Evripidou N, Giannakou M, Constantinides
               doi: 10.1016/j.biocel.2017.08.018                  G, Damianou C. Acoustical properties of 3D printed
            41.  Taheri S, Ghazali HS, Ghazali ZS, Bhattacharyya A, Noh I.   thermoplastics. J Acoust Soc Am. 2021;149(4):2854-2864.
               Progress in biomechanical stimuli on the cell-encapsulated      doi: 10.1121/10.0004772
               hydrogels  for  cartilage  tissue  regeneration.  Biomater  Res.   53.  Hung KC, Tseng CS, Hsu SH. Synthesis and 3D Printing
               2023;27(1):22.                                     of biodegradable polyurethane elastomer by a water-based
               doi: 10.1186/s40824-023-00358-x                    process for cartilage tissue engineering applications.  Adv
            42.  Tsimbouri PM, Childs PG, Pemberton GD, et al. Stimulation   Healthc Mater. 2014;3(10):1578-1587.
               of 3D osteogenesis by mesenchymal stem cells using a      doi: 10.1002/adhm.201400018
               nanovibrational  bioreactor.  Nat Biomed Eng.  2017;1(9):   54.  Wang  C, Feng  N, Chang  F, et  al. Injectable  cholesterol-
               758-770.                                           enhanced  stereocomplex  polylactide  thermogel loading
               doi: 10.1038/s41551-017-0127-4                     chondrocytes for optimized cartilage regeneration.  Adv
            43.  Bahmaee H, Owen R, Boyle L, et al. Design and evaluation   Healthc Mater. 2019;8(14):1-10.
               of  an  osteogenesis-on-a-chip  microfluidic  device     doi: 10.1002/adhm.201900312
               incorporating 3D cell culture.  Front Bioeng Biotechnol.   55.  Wu J, Fu L, Yan Z, et al. Hierarchical porous ECM scaffolds
               2020;8(September):557111.                          incorporating GDF-5 fabricated by cryogenic 3D printing
               doi: 10.3389/fbioe.2020.557111                     to promote articular cartilage regeneration.  Biomater Res.
            44.  Callejas A, Melchor J, Faris IH, Rus G. Viscoelastic model   2023;27(1):7.
               characterization of human cervical tissue by torsional waves.      doi: 10.1186/s40824-023-00349-y
               J Mech Behav Biomed Mater. 2021;115:104261.     56.  Lanir Y. Mechanisms of residual stress in soft tissues.
               doi: 10.1016/j.jmbbm.2020.104261                   J Biomech Eng. 2009;131(4):044506.
            45.  Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria      doi: 10.1115/1.3049863
               for  defining  multipotent  mesenchymal  stromal  cells.   57.  Hotaling NA, Tang L, Irvine DJ, Babensee JE. Biomaterial
               The   International Society for Cellular Therapy position   strategies for immunomodulation. Annu Rev Biomed Eng.
               statement. Cytotherapy. 2006;8(4):315-317.         2015;17:317-349.
               doi: 10.1080/14653240600855905                     doi: 10.1146/annurev-bioeng-071813-104814
            46.  Martínez-Moreno D, Jiménez G, Chocarro-Wrona C, et   58.  Humphrey  JD,  Dufresne  ER,  Schwartz  MA.
               al. Pore geometry influences growth and cell adhesion of   Mechanotransduction and extracellular matrix homeostasis.
               infrapatellar mesenchymal stem cells in biofabricated 3D   Nat Rev Mol Cell Biol. 2014;15(12):802-812.
               thermoplastic scaffolds useful for cartilage tissue engineering.      doi: 10.1038/nrm3896
               Mater Sci Eng C Mater Biol Appl. 2021;122:111933.
               doi: 10.1016/j.msec.2021.111933                 59.  Koo YW, Lim CS, Darai A, et al. Shape-memory collagen
                                                                  scaffold combined with hyaluronic acid for repairing
            47.  Watanabe T, Sassa K. Velocity and amplitude of P-waves   intervertebral disc. Biomater Res. 2023;27(1):26.
               transmitted through fractured zones composed of multiple      doi: 10.1186/s40824-023-00368-9
               thin low-velocity layers. Int J Rock Mech Mining Sci Geomech
               Abstr. 1995;32(4):313-324.                      60.  Gonalves A, Costa P, Rodrigues MT, Dias IR, Reis RL,
                                                                  Gomes ME. Effect of flow perfusion conditions in the
            48.  Tarrazó-Serrano D, Castiñeira-Ibáñez S, Sánchez-Aparisi E,   chondrogenic differentiation of bone marrow stromal cells
               Uris A, Rubio C. MRI compatible planar material acoustic   cultured onto starch  based biodegradable  scaffolds.  Acta
               lenses. Appl Sci. 2018;8(12):2634.                 Biomater. 2011;7(4):1644-1652.
               doi: 10.3390/app8122634                            doi: 10.1016/j.actbio.2010.11.044


            Volume 10 Issue 4 (2024)                       385                                doi: 10.36922/ijb.3389
   388   389   390   391   392   393   394   395   396   397   398