Page 465 - IJB-10-4
P. 465

International Journal of Bioprinting                          Biomechanical mimic-based artificial oviduct system




            11.  Gruber I, Klein M. Embryo culture media for human   24.  Ying G, Manriquez J, Wu D, et al. An open-source handheld
               IVF: which possibilities exist?  J Turk Ger Gynecol Assoc.   extruder loaded with pore-forming bioink for in situ wound
               2011;12:110-117.                                   dressing. Mater Today Bio. 2020;8:100074.
               doi: 10.5152/jtgga.2011.25                         doi: 10.1016/j.mtbio.2020.100074
            12.  Jafarbeglou F, Nazari MA, Keikhab F, Amanpour S, Azadi   25.  Wu T, Gao YY, Su J, et al. Three-dimensional bioprinting
               M.  Visco-hyperelastic  characterization  of  the  mechanical   of  artificial  ovaries  by  an  extrusion-based  method  using
               properties of human fallopian tube tissue using atomic force   gelatin-methacryloyl bioink. Climacteric. 2022;25:170-178.
               microscopy. Materialia. 2021;16:101074.            doi: 10.1080/13697137.2021.1921726
               doi: 10.1016/j.mtla.2021.101074
                                                               26.  Amorim CA, Shikanov A. The artificial ovary: current status
            13.  Di X, Gao X, Peng L, et al. Cellular mechanotransduction   and future perspectives. Future Oncol. 2016;12:2323-2332.
               in health and diseases: from molecular mechanism to      doi: 10.2217/fon-2016-0202
               therapeutic targets. Signal Transduct Target Ther. 2023;8:282.  27.  Celikkin N, Mastrogiacomo S, Jaroszewicz J, Walboomers
               doi: 10.1038/s41392-023-01501-9
                                                                  XF, Swieszkowski W. Gelatin methacrylate scaffold for bone
            14.  Luo C, Ding Z, Tu Y, Tan J, Luo Q, Song G. Biomaterial-  tissue engineering: the influence of polymer concentration.
               based platforms for cancer stem cell enrichment and study.   J Biomed Mater Res A. 2018;106:201-209.
               Cancer Biol Med. 2021;18:458-469.                  doi: 10.1002/jbm.a.36226.
               doi: 10.20892/j.issn.2095-3941.2020.0420
                                                               28.  Fathi E, Farahzadi R, Valipour B. Alginate/gelatin
            15.  d’Angelo M, Benedetti E, Tupone MG, et al. The role of stiffness   encapsulation promotes NK cells differentiation potential of
               in cell reprogramming: a potential role for biomaterials in   bone marrow resident C-kit(+) hematopoietic stem cells. Int
               inducing tissue regeneration. Cells. 2019;8(9):1036.  J Biol Macromol. 2021;177:317-327.
               doi: 10.3390/cells8091036.                         doi: 10.1016/j.ijbiomac.2021.02.131
            16.  Janmey PA, Fletcher DA, Reinhart-King CA. Stiffness   29.  McBeth C, Lauer J, Ottersbach M, Campbell J, Sharon
               sensing by cells. Physiol Rev. 2020;100:695-724.   A, Sauer-Budge AF. 3D bioprinting of GelMA scaffolds
               doi: 10.1152/physrev.00013.2019.                   triggers mineral deposition by primary human osteoblasts.
                                                                  Biofabrication. 2017;9:015009.
            17.  Miller CJ, Davidson LA. The interplay between cell signalling
               and mechanics in developmental processes. Nat Rev Genet.      doi: 10.1088/1758-5090/aa53bd
               2013;14:733-744.                                30.  Krishnamoorthy S, Noorani B, Xu C. Effects of encapsulated
               doi: 10.1038/nrg3513                               cells on the physical-mechanical properties and
                                                                  microstructure of gelatin methacrylate Hydrogels. Int J Mol
            18.  Shah JS, Sabouni R, Cayton Vaught KC, Owen CM, Albertini
               DF, Segars JH. Biomechanics and mechanical signaling   Sci. 2019;20(20):5061.
               in  the  ovary:  a  systematic  review.  J Assist Reprod Genet.      doi: 10.3390/ijms20205061
               2018;35:1135-1148.                              31.  Martin JA, Wang Z. Next-generation transcriptome
               doi: 10.1007/s10815-018-1180-y                     assembly. Nat Rev Genet. 2011;12(10):671-682.
                                                                  doi: 10.1038/nrg3068
            19.  Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh
               JYH. 3D bioprinting of tissues and organs for regenerative   32.  Jiang H, Lei R, Ding SW, Zhu S. Skewer: a fast and accurate
               medicine. Adv Drug Deliv Rev. 2018;132:296-332.    adapter trimmer for next-generation sequencing paired-end
               doi: 10.1016/j.addr.2018.07.004                    reads. BMC Bioinformatics. 2014;15:182.
                                                                  doi: 10.1186/1471-2105-15-182
            20.  Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for
               engineering complex tissues. Biotechnol Adv. 2016;34:422-434.  33.  Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast
               doi: 10.1016/j.biotechadv.2015.12.011              universal RNA-seq aligner. Bioinformatics. 2013;29:15-21.
                                                                  doi: 10.1093/bioinformatics/bts635
            21.  Chung JHY, Naficy S, Yue Z, et al. Bio-ink properties and
               printability for extrusion printing living cells. Biomater Sci.   34.  Trapnell C, Williams BA, Pertea G, et al. Transcript assembly
               2013;1:763-773.                                    and quantification by RNA-Seq reveals unannotated
               doi: 10.1039/c3bm00012e                            transcripts and isoform switching during cell differentiation.
                                                                  Nat Biotechnol. 2010;28:511-515.
            22.  Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J.
               Printability and shape fidelity of bioinks in 3D bioprinting.      doi: 10.1038/nbt.1621
               Chem Rev. 2020;120:11028-11055.                 35.  Wu  T, Hu  E, Xu S,  et al. clusterProfiler  4.0: a  universal
               doi: 10.1021/acs.chemrev.0c00084                   enrichment tool for interpreting omics data.  Innovation
                                                                  (Camb). 2021;2:100141.
            23.  Lee JM, Yeong WY. Design and printing strategies in 3d
               bioprinting of cell-hydrogels: a review. Adv Healthc Mater.      doi: 10.1016/j.xinn.2021.100141
               2016;5:2856-2865.                               36.  Liu P, Shen H, Zhi Y, et al. 3D bioprinting and in vitro study
               doi: 10.1002/adhm.201600435                        of bilayered membranous construct with human cells-


            Volume 10 Issue 4 (2024)                       457                                doi: 10.36922/ijb.3346
   460   461   462   463   464   465   466   467   468   469   470