Page 555 - IJB-10-4
P. 555

International Journal of Bioprinting                                   3D-bioprinting of osteochondral plugs




            39.  Kang HW, Lee S, Ko I, et al. A 3D bioprinting system to   51.  Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive
               produce human-scale tissue constructs with structural   calcium phosphate materials and applications in bone
               integrity. Nat Biotechnol. 2016;34:312-319.        regeneration. Biomater Res. 2019;23:4.
               doi: 10.1038/nbt.3413                              doi: 10.1186/s40824-018-0149-3
            40.  Galarraga JH, Kwon MY, Burdick JA. 3D bioprinting via an   52.  Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA. The elastic
               in situ crosslinking technique towards engineering cartilage   moduli of human subchondral, trabecular, and cortical bone
               tissue. Sci Rep. 2019;9(1):19987.                  tissue and the size-dependency of cortical bone modulus.
               doi: 10.1038/s41598-019-56117-3                    J Biomech. 1990;23(11):1103-1113.
                                                                  doi: 10.1016/0021-9290(90)90003-l
            41.  Critchley S, Sheehy EJ, Cunniffe G, et al. 3D printing of
               fibre-reinforced cartilaginous templates for the regeneration   53.  Goldstein SA. The mechanical properties of trabecular bone:
               of osteochondral defects. Acta Biomater. 2020;113:130-143.  dependence on anatomic location and function. J Biomech.
               doi: 10.1016/j.actbio.2020.05.040                  1987;20(11-12):1055-1061.
                                                                  doi: 10.1016/0021-9290(87)90023-6
            42.  Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-
               alginate as bioink for three-dimensional (3D) cell printing   54.  Goldring MB. Chondrogenesis, chondrocyte differentiation,
               based cartilage tissue engineering. Mater Sci Eng C Mater   and articular cartilage metabolism in health and osteoarthritis.
               Biol Appl. 2018;83:195-201.                        Ther Adv Musculoskelet Dis. 2012;4(4):269-285.
               doi: 10.1016/j.msec.2017.09.002                    doi: 10.1177/1759720X12448454
            43.  Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar   55.  Fakhari A, Berkland C. Applications and emerging trends
               LJ. 3D bioprinting of spatially heterogeneous collagen   of hyaluronic acid in tissue engineering, as a dermal filler
               constructs for cartilage tissue engineering. ACS Biomater Sci   and in osteoarthritis treatment.  Acta Biomater. 2013;9(7):
               Eng. 2016;2(10):1800-1805.                         7081-7092.
               doi: 10.1021/acsbiomaterials.6b00288               doi: 10.1016/j.actbio.2013.03.005
            44.  Allen NB, Abar B, Johnson L, Burbano J, Danilkowicz RM,   56.  Erickson IE, Huang AH, Sengupta S, Kestle S, Burdick JA,
               Adams SB. 3D-bioprinted GelMA-gelatin-hydroxyapatite   Mauck RL. Macromer density influences mesenchymal stem
               osteoblast-laden composite hydrogels for bone tissue   cell chondrogenesis and maturation in photocrosslinked
               engineering. Bioprinting. 2022;26:e00196.          hyaluronic acid hydrogels.  Osteoarthritis Cartilage.
               doi: 10.1016/j.bprint.2022.e00196                  2009;17(12):1639-1648.
                                                                  doi: 10.1016/j.joca.2009.07.003
            45.  Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW. 3D
               printing of composite tissue with complex shape applied to   57.  Fairbanks  BD,  Schwartz  MP,  Bowman  CN,  Anseth  KS.
               ear regeneration. Biofabrication. 2014;6(2):024103.  Photoinitiated polymerization of PEG-diacrylate with
               doi: 10.1088/1758-5082/6/2/024103                  lithium phenyl-2,4,6-trimethylbenzoylphosphinate:
                                                                  polymerization rate and cytocompatibility.  Biomaterials.
            46.  Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue   2009;30(35):6702-6707.
               analogues with decellularized extracellular matrix bioink.      doi: 10.1016/j.biomaterials.2009.08.055
               Nat Commun. 2014;5:3935.
               doi: 10.1038/ncomms4935                         58.  Nguyen AK, Goering PL, Reipa V, Narayan RJ. Toxicity
                                                                  and photosensitizing assessment of gelatin methacryloyl-
            47.  Husen M, Custers RJH, Hevesi M, Krych AJ, Saris DBF. Size   based hydrogels photoinitiated with lithium phenyl-
               of cartilage defects and the need for repair: a systematic   2,4,6-trimethylbenzoylphosphinate in human primary
               review. J Cartil Jt Preserv. 2022;2(3):100049.     renal proximal tubule epithelial cells.  Biointerphases.
               doi: 10.1016/j.jcjp.2022.100049                    2019;14(2):021007.
            48.  Kabir W, Di Bella C, Choong PF, O’Connell CD. Assessment      doi: 10.1116/1.5095886
               of native human articular cartilage: a biomechanical   59.  Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison
               protocol. Cartilage. 202;13(2):427S-37S.           of different bioinks for 3D bioprinting of fibrocartilage and
               doi: 10.1177/1947603520973240                      hyaline cartilage. Biofabrication. 2016;8(4):045002.
            49.  Chartrain NA, Gilchrist KH, Ho VB, Klarmann GJ.      doi: 10.1088/1758-5090/8/4/045002
               3D  bioprinting  for  the  repair  of  articular  cartilage  and   60.  Anderson DE, Johnstone B. Dynamic mechanical
               osteochondral tissue. Bioprinting. 2022;28:e00239.  compression of chondrocytes for tissue engineering: a
               doi: 10.1016/j.bprint.2022.e00239                  critical review. Front Bioeng Biotechnol. 2017;5:76.
            50.  Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh      doi: 10.3389/fbioe.2017.00076
               S, Kainberger F. Subchondral bone and cartilage disease: a   61.  Tsanaktsidou E, Kammona O, Labude N, et al. Biomimetic
               rediscovered functional unit.  Invest Radiol. 2000;35(10):   cell-laden MeHA hydrogels for the regeneration of cartilage
               581-588.                                           tissue. Polymers (Basel). 2020;12(7):1598.
               doi: 10.1097/00004424-200010000-00004              doi: 10.3390/polym12071598


            Volume 10 Issue 4 (2024)                       547                                doi: 10.36922/ijb.4053
   550   551   552   553   554   555   556   557   558   559   560