Page 555 - IJB-10-4
P. 555
International Journal of Bioprinting 3D-bioprinting of osteochondral plugs
39. Kang HW, Lee S, Ko I, et al. A 3D bioprinting system to 51. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive
produce human-scale tissue constructs with structural calcium phosphate materials and applications in bone
integrity. Nat Biotechnol. 2016;34:312-319. regeneration. Biomater Res. 2019;23:4.
doi: 10.1038/nbt.3413 doi: 10.1186/s40824-018-0149-3
40. Galarraga JH, Kwon MY, Burdick JA. 3D bioprinting via an 52. Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA. The elastic
in situ crosslinking technique towards engineering cartilage moduli of human subchondral, trabecular, and cortical bone
tissue. Sci Rep. 2019;9(1):19987. tissue and the size-dependency of cortical bone modulus.
doi: 10.1038/s41598-019-56117-3 J Biomech. 1990;23(11):1103-1113.
doi: 10.1016/0021-9290(90)90003-l
41. Critchley S, Sheehy EJ, Cunniffe G, et al. 3D printing of
fibre-reinforced cartilaginous templates for the regeneration 53. Goldstein SA. The mechanical properties of trabecular bone:
of osteochondral defects. Acta Biomater. 2020;113:130-143. dependence on anatomic location and function. J Biomech.
doi: 10.1016/j.actbio.2020.05.040 1987;20(11-12):1055-1061.
doi: 10.1016/0021-9290(87)90023-6
42. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-
alginate as bioink for three-dimensional (3D) cell printing 54. Goldring MB. Chondrogenesis, chondrocyte differentiation,
based cartilage tissue engineering. Mater Sci Eng C Mater and articular cartilage metabolism in health and osteoarthritis.
Biol Appl. 2018;83:195-201. Ther Adv Musculoskelet Dis. 2012;4(4):269-285.
doi: 10.1016/j.msec.2017.09.002 doi: 10.1177/1759720X12448454
43. Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar 55. Fakhari A, Berkland C. Applications and emerging trends
LJ. 3D bioprinting of spatially heterogeneous collagen of hyaluronic acid in tissue engineering, as a dermal filler
constructs for cartilage tissue engineering. ACS Biomater Sci and in osteoarthritis treatment. Acta Biomater. 2013;9(7):
Eng. 2016;2(10):1800-1805. 7081-7092.
doi: 10.1021/acsbiomaterials.6b00288 doi: 10.1016/j.actbio.2013.03.005
44. Allen NB, Abar B, Johnson L, Burbano J, Danilkowicz RM, 56. Erickson IE, Huang AH, Sengupta S, Kestle S, Burdick JA,
Adams SB. 3D-bioprinted GelMA-gelatin-hydroxyapatite Mauck RL. Macromer density influences mesenchymal stem
osteoblast-laden composite hydrogels for bone tissue cell chondrogenesis and maturation in photocrosslinked
engineering. Bioprinting. 2022;26:e00196. hyaluronic acid hydrogels. Osteoarthritis Cartilage.
doi: 10.1016/j.bprint.2022.e00196 2009;17(12):1639-1648.
doi: 10.1016/j.joca.2009.07.003
45. Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW. 3D
printing of composite tissue with complex shape applied to 57. Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS.
ear regeneration. Biofabrication. 2014;6(2):024103. Photoinitiated polymerization of PEG-diacrylate with
doi: 10.1088/1758-5082/6/2/024103 lithium phenyl-2,4,6-trimethylbenzoylphosphinate:
polymerization rate and cytocompatibility. Biomaterials.
46. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue 2009;30(35):6702-6707.
analogues with decellularized extracellular matrix bioink. doi: 10.1016/j.biomaterials.2009.08.055
Nat Commun. 2014;5:3935.
doi: 10.1038/ncomms4935 58. Nguyen AK, Goering PL, Reipa V, Narayan RJ. Toxicity
and photosensitizing assessment of gelatin methacryloyl-
47. Husen M, Custers RJH, Hevesi M, Krych AJ, Saris DBF. Size based hydrogels photoinitiated with lithium phenyl-
of cartilage defects and the need for repair: a systematic 2,4,6-trimethylbenzoylphosphinate in human primary
review. J Cartil Jt Preserv. 2022;2(3):100049. renal proximal tubule epithelial cells. Biointerphases.
doi: 10.1016/j.jcjp.2022.100049 2019;14(2):021007.
48. Kabir W, Di Bella C, Choong PF, O’Connell CD. Assessment doi: 10.1116/1.5095886
of native human articular cartilage: a biomechanical 59. Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison
protocol. Cartilage. 202;13(2):427S-37S. of different bioinks for 3D bioprinting of fibrocartilage and
doi: 10.1177/1947603520973240 hyaline cartilage. Biofabrication. 2016;8(4):045002.
49. Chartrain NA, Gilchrist KH, Ho VB, Klarmann GJ. doi: 10.1088/1758-5090/8/4/045002
3D bioprinting for the repair of articular cartilage and 60. Anderson DE, Johnstone B. Dynamic mechanical
osteochondral tissue. Bioprinting. 2022;28:e00239. compression of chondrocytes for tissue engineering: a
doi: 10.1016/j.bprint.2022.e00239 critical review. Front Bioeng Biotechnol. 2017;5:76.
50. Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh doi: 10.3389/fbioe.2017.00076
S, Kainberger F. Subchondral bone and cartilage disease: a 61. Tsanaktsidou E, Kammona O, Labude N, et al. Biomimetic
rediscovered functional unit. Invest Radiol. 2000;35(10): cell-laden MeHA hydrogels for the regeneration of cartilage
581-588. tissue. Polymers (Basel). 2020;12(7):1598.
doi: 10.1097/00004424-200010000-00004 doi: 10.3390/polym12071598
Volume 10 Issue 4 (2024) 547 doi: 10.36922/ijb.4053

