Page 138 - IJB-5-1
P. 138
Discovering new 3D bioprinting applications: Analyzing the case of optical tissue phantoms
of optical tissue phantom in verification and validation 40. Chmarra M K, Hansen R, Mårvik R, et al., 2013, Multimodal
of medical imaging devices. Int Workshop Biophotonics, phantom of liver tissue. PLoS One, 8(5): e64180. https://
2011: 1–3. https://doi.org/10.1109/IWBP.2011.5954806. doi.org/10.1371/annotation/b148461a-eb97-43c9-a44c-
28. Oregon Medical Laser Center (OMLC), 2017, Optical f97e7eab1711.
Phantoms. Available from: https://www.omlc.org/classroom/ 41. Alexei K, Srirang M, Rosalyn S, et al., 2003, Poly(vinyl
phantom. [Last accessed on 2018 Oct 17]. alcohol) gels for use as tissue phantoms in photoacoustic
29. Vernon M L, Fréchette J, Painchaud Y, et al., 1999, Fabrication mammography. Phys Med Biol, 48(3): 357. https://doi.
and characterization of a solid polyurethane phantom for org/10.1088/0031-9155/48/3/306.
optical imaging through scattering media. Appl Opt, 38(19): 42. Avtzi S, Zacharopoulos A, Psycharakis S, et al., 2013,
4247–4251. https://doi.org/10.1364/ao.38.004247. Fabrication and Characterization of a 3-D Non-Homogeneous
30. Rang M, Jones A C, Zhou F, et al., 2008, Optical near-field Tissue-Like Mouse Phantom for Optical Imaging,
mapping of plasmonic nanoprisms. Nano Lett, 8(10): 3357– 1 International Conference “Biophotonics Riga 2013”,
st
3363. https://doi.org/10.1021/nl801808b. SPIE, 6. https://doi.org/10.1117/12.2044698.
31. Bisaillon C É, Dufour M L, Lamouche G, 2011, Artery 43. Wang K, Ho C C, Zhang C, et al., 2017, A review on the
phantoms for intravascular optical coherence tomography: 3D printing of functional structures for medical phantoms
Healthy arteries. Biomed Opt Express, 2(9): 2599–2613. and regenerated tissue and organ applications. Engineering,
https://doi.org/10.1364/boe.2.002599. 3: 653–662. https://doi.org/10.1016/J.ENG.2017.05.013.
32. Lai P, Xu X, Wang L V, 2014, Dependence of optical scattering 44. Velasquillo C, Galue E A, Rodriquez L, et al., 2013, Skin 3D
from intralipid in gelatin-gel based tissue-mimicking bioprinting. Applications in cosmetology. J Cosmet Dermatol
phantoms on mixing temperature and time. J Biomed Opt, Sci Appl, 3(1): 5. https://doi.org/10.4236/jcdsa.2013.31A012.
19(3): 35002. https://doi.org/10.1117/1.jbo.19.3.035002. 45. Seer P, 2018, Analysis of Patents, Search and Project
33. Pleijhuis R, Timmermans A, De Jong J, et al., 2014, Tissue- Collaboration. Available from: https://www.patseer.com.
simulating phantoms for assessing potential near-infrared [Last accessed on 2018 Sep 24].
fluorescence imaging applications in breast cancer surgery. 46. Jang J, Yi H G, Cho D W, 2016, 3D printed tissue models:
J Vis Exp, 91: 51776. https://doi.org/10.3791/51776. Present and future. ACS Biomater Sci Eng, 2(10): 1722–1731.
34. Mehrban N, Teoh G Z, Birchall M A, 2016, 3D bioprinting https://doi.org/10.1021/acsbiomaterials.6b00129.
for tissue engineering: Stem cells in hydrogels. Int J Bioprint, 47. Bishop E S, Mostafa S, Pakvasa M, et al., 2017, 3-D bioprinting
2(1): 14. https://doi.org/10.18063/ijb.2016.01.006. technologies in tissue engineering and regenerative medicine:
35. Jang T S, Jung H D, Pan H M, et al., 2018, 3D printing of Current and future trends. Genes Dis, 4(4): 185–195. https://
hydrogel composite systems: Recent advances in technology doi.org/10.1016/j.gendis.2017.10.002.
for tissue engineering. Int J Bioprint, 4(1): 126. https://doi. 48. Sokolov K V, Galvan J, Myakov A V, et al., 2002,
org/10.18063/ijb.v4i1.126. Realistic three-dimensional epithelial tissue phantoms for
36. Li J, Mooney D J, 2016, Designing hydrogels for controlled biomedical optics, J Biomed Opt, 7(1): 148–156. https://doi.
drug delivery. Nat Rev Mater, 1: 16071. https://doi. org/10.1117/1.1427052.
org/10.1038/natrevmats.2016.71. 49. Lurie K L, Smith G T, Khan S A, et al., 2014, Three-
37. Zhang X, Xia L Y, Chen X, et al., 2017, Hydrogel-based dimensional, distendable bladder phantom for optical
phototherapy for fighting cancer and bacterial infection. coherence tomography and white light cystoscopy. J Biomed
Sci China Mater, 60(6): 487–503. https://doi.org/10.1007/ Opt, 19(3): 36009. https://doi.org/10.1117/1.jbo.19.3.036009.
s40843-017-9025-3. 50. Kim H, Hau N T, Chae Y G, et al., 2016, 3D printing-assisted
38. Guo X, Qu J, Zhu C, et al., 2018, Synchronous delivery of fabrication of double-layered optical tissue phantoms for
oxygen and photosensitizer for alleviation of hypoxia tumor laser tattoo treatments. Lasers Surg Med, 48(4): 392–399.
microenvironment and dramatically enhanced photodynamic https://doi.org/10.1002/lsm.22469.
therapy. Drug Deliv, 25(1): 585–599. https://doi.org/10.1080 51. Sangha G S, Hale N J, Goergen C J, 2018, Adjustable
/10717544.2018.1435751. photoacoustic tomography probe improves light delivery
39. Wilson B C, Patterson M S, 2008, The physics, biophysics and image quality. Photoacoustics, 12: 6–13. https://doi.
and technology of photodynamic therapy. Phys Med Biol, org/10.1016/j.pacs.2018.08.002.
53(9): R61. https://doi.org/10.1088/0031-9155/53/9/R01. 52. Ghassemi P, Wang J, Melchiorri A J, et al., 2015, Rapid
10 International Journal of Bioprinting (2019)–Volume 5, Issue 1

