Page 79 - IJB-5-1
P. 79
3D tissue hybrid biofabrication
6. Takahashi H, Okano T, 2015, Cell sheet-based tissue 18. Udelsman B, Hibino N, Villalona G A, et al., 2011,
engineering for organizing anisotropic tissue constructs Development of an operator-independent method for seeding
produced using microfabricated thermoresponsive tissue-engineered vascular grafts. Tissue Eng Part C.
substrates. Adv Healthc Mater, 4(16): 2388-2407. https://doi. Methods, 17(7): 731-736. https://doi.org/10.1089/ten.
org/10.1002/adhm.201500194. tec.2010.0581.
7. Moldovan N I, Hibino N, Nakayama K, 2017, Principles 19. Fu W J, Xu Y D, Wang Z X, et al., 2012, New ureteral scaffold
of the kenzan method for robotic cell spheroid-based three- constructed with composite poly(L-lactic acid)-collagen and
dimensional bioprinting. Tissue Eng Part B Rev, 23(3): 237- urothelial cells by new centrifugal seeding system. J Biomed
244. https://doi.org/10.1089/ten.teb.2016.0322. Mater Res A, 100(7): 1725-1733. https://doi.org/10.1002/
8. Ovsianikov A, Khademhosseini A, Mironov V, 2018, The jbm.a.34134.
synergy of scaffold-based and scaffold-free tissue engineering 20. Thomas J, Jones D, Moldovan L, et al., 2018., Labeling of
strategies. Trends Biotechnol, 36(4): 348-357. https://doi. endothelial cells with magnetic microbeads by angiophagy.
org/10.1016/j.tibtech.2018.01.005. Biotechnol Lett, 2018. http//:doi: 10.1007/s10529-018-2581-9.
9. Moldovan L, 2017, Comparison of biomaterial-dependent 21. Murphy S V, Atala A, 2014, 3D bioprinting of tissues
and independent bioprinting methods for cardiovascular and organs. Nat Biotechnol, 32(8): 773-785. https://doi.
medicine. Curr Opin Biomed Eng, 2: 124-131. https://doi. org/10.1038/nbt.2958.
org/10.1016/j.cobme.2017.05.009. 22. Murphy S V, Skardal A, Atala A, 2013, Evaluation of
10. Zhu W, Ma X, Gou M, et al., 2016, 3D printing of functional hydrogels for bio-printing applications. J Biomed Mater
biomaterials for tissue engineering. Curr Opin Biotechnol, Res A, 101(1): 272-284. https://doi.org/10.1002/jbm.a.34326.
40: 103-112. https://doi.org/10.1016/j.copbio.2016.03.014. 23. Boland T, Xu T, Damon B, et al., 2006, Application of inkjet
11. Muylaert D E, Fledderus J O, Bouten C V, et al., 2014, printing to tissue engineering. Biotechnol J, 1(9): 910-917.
Combining tissue repair and tissue engineering; bioactivating https://doi.org/10.1002/biot.200600081.
implantable cell-free vascular scaffolds. Heart, 100(23): 24. Pirlo R K, Dean D, Knapp D R, et al., 2006, Cell deposition
1825-1830. https://doi.org/10.1136/heartjnl-2014-306092. system based on laser guidance. Biotechnol J, 1(9): 1007-
12. Jeong, C.G., Atala A, 2015, 3D printing and biofabrication 1013. https://doi.org/10.1002/biot.200600127.
for load bearing tissue engineering. Adv Exp Med Biol, 25. Xiong R, Zhang Z, Chai W, et al., 2015, Freeform drop-on-
881: 3-14. https://doi.org/10.1007/978-3-319-22345-2_1. demand laser printing of 3D alginate and cellular constructs.
13. Banu A, Tatara A M, Sutradhar A, 2018, Large animal models Biofabrication, 7(4): 45011. https://doi.org/10.1088/1758-
of an in vivo bioreactor for engineering vascularized bone. 5090/7/4/045011.
Tissue Eng Part B, 24(4): 317-325. https://doi.org/10.1089/ 26. Hospodiuk M, Dey M, Sosnoski D, et al., 2017, The
ten.teb.2018.0005. bioink: A comprehensive review on bioprintable materials.
14. Ho S S, Murphy K C, Binder B Y, et al., 2016, Increased Biotechnol Adv, 35(2): 217-239. https://doi.org/10.1016/j.
survival and function of mesenchymal stem cell spheroids biotechadv.2016.12.006.
entrapped in instructive alginate hydrogels. Stem Cells Transl 27. Pourchet L J, Thepot A, Albouy M, et al., 2017, Human skin
Med, 5(6): 773-781. https://doi.org/10.5966/sctm.2015-0211. 3D bioprinting using scaffold-free approach. Adv Healthc
15. Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted Mater, 6(4):345. https://doi.org/10.1002/adhm.201601101.
amniotic fluid-derived stem cells accelerate healing of large 28. Kolesky D B, Homan K A, Skylar-Scott M A, et al., 2016,
skin wounds. Stem Cells Transl Med, 1(11): 792-802. https:// Three-dimensional bioprinting of thick vascularized tissues.
doi.org/10.5966/sctm.2012-0088. Proc Natl Acad Sci U S A, 113(12): 3179-3184. https://doi.
16. Laternser S, Keller H, Leupin O, et al., 2018, A novel microplate org/10.1073/pnas.1521342113.
3D bioprinting platform for the engineering of muscle and 29. Lee S J, Lim G J, Lee J W, et al., 2006, In vitro evaluation of
tendon tissues. Slas Technol, 3: 2472630318776594. https:// a poly(lactide-co-glycolide)–collagen composite scaffold for
doi.org/10.1177/2472630318776594. bone regeneration. Biomaterials, 27(18): 3466-3472. https://
17. Rapoport S, 2013, Electrospinning tubular scaffolds with doi.org/10.1016/j.biomaterials.2006.01.059.
tissue-like mechanical properties and biomimetic surface 30. Kang H W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting
features. Methods Mol Biol, 1001: 153-165. https://doi. system to produce human-scale tissue constructs with
org/10.1007/978-1-62703-363-3_13. structural integrity. Nat Biotechnol, 34(3): 312-319. https://
6 International Journal of Bioprinting (2019)–Volume 5, Issue 1

