Page 79 - IJB-5-1
P. 79

3D tissue hybrid biofabrication
           6.   Takahashi H, Okano  T, 2015, Cell  sheet-based  tissue   18.  Udelsman B, Hibino N,  Villalona  G  A,  et al., 2011,
               engineering  for organizing  anisotropic  tissue constructs   Development of an operator-independent method for seeding
               produced  using  microfabricated  thermoresponsive  tissue-engineered  vascular  grafts.  Tissue  Eng  Part C.
               substrates. Adv Healthc Mater, 4(16): 2388-2407. https://doi.  Methods,  17(7):  731-736.  https://doi.org/10.1089/ten.
               org/10.1002/adhm.201500194.                         tec.2010.0581.
           7.   Moldovan N I, Hibino N, Nakayama K, 2017, Principles   19.  Fu W J, Xu Y D, Wang Z X, et al., 2012, New ureteral scaffold
               of the kenzan method for robotic cell spheroid-based three-  constructed with composite poly(L-lactic acid)-collagen and
               dimensional bioprinting. Tissue Eng Part B Rev, 23(3): 237-  urothelial cells by new centrifugal seeding system. J Biomed
               244. https://doi.org/10.1089/ten.teb.2016.0322.     Mater  Res  A, 100(7): 1725-1733. https://doi.org/10.1002/
           8.   Ovsianikov A, Khademhosseini A, Mironov  V, 2018,  The   jbm.a.34134.
               synergy of scaffold-based and scaffold-free tissue engineering   20.  Thomas J, Jones D, Moldovan L, et al., 2018., Labeling of
               strategies.  Trends  Biotechnol, 36(4): 348-357. https://doi.  endothelial cells with magnetic microbeads by angiophagy.
               org/10.1016/j.tibtech.2018.01.005.                  Biotechnol Lett, 2018. http//:doi: 10.1007/s10529-018-2581-9.
           9.   Moldovan L, 2017, Comparison of biomaterial-dependent   21.  Murphy S  V,  Atala  A, 2014, 3D bioprinting  of tissues
               and independent  bioprinting  methods for cardiovascular   and  organs.  Nat  Biotechnol, 32(8):  773-785. https://doi.
               medicine.  Curr  Opin  Biomed  Eng, 2: 124-131. https://doi.  org/10.1038/nbt.2958.
               org/10.1016/j.cobme.2017.05.009.                22.  Murphy S  V, Skardal  A,  Atala  A, 2013, Evaluation  of
           10.  Zhu W, Ma X, Gou M, et al., 2016, 3D printing of functional   hydrogels for bio-printing  applications.  J Biomed  Mater
               biomaterials  for tissue engineering.  Curr  Opin  Biotechnol,   Res A, 101(1): 272-284. https://doi.org/10.1002/jbm.a.34326.
               40: 103-112. https://doi.org/10.1016/j.copbio.2016.03.014.  23.  Boland T, Xu T, Damon B, et al., 2006, Application of inkjet
           11.  Muylaert D E, Fledderus J O, Bouten C  V,  et al., 2014,   printing to tissue engineering. Biotechnol J, 1(9): 910-917.
               Combining tissue repair and tissue engineering; bioactivating   https://doi.org/10.1002/biot.200600081.
               implantable cell-free  vascular  scaffolds.  Heart, 100(23):   24.  Pirlo R K, Dean D, Knapp D R, et al., 2006, Cell deposition
               1825-1830. https://doi.org/10.1136/heartjnl-2014-306092.  system based on laser guidance.  Biotechnol  J, 1(9): 1007-
           12.  Jeong, C.G., Atala A, 2015, 3D printing and biofabrication   1013. https://doi.org/10.1002/biot.200600127.
               for load bearing  tissue engineering.  Adv  Exp  Med  Biol,   25.  Xiong R, Zhang Z, Chai W, et al., 2015, Freeform drop-on-
               881: 3-14. https://doi.org/10.1007/978-3-319-22345-2_1.  demand laser printing of 3D alginate and cellular constructs.
           13.  Banu A, Tatara A M, Sutradhar A, 2018, Large animal models   Biofabrication, 7(4): 45011. https://doi.org/10.1088/1758-
               of an in vivo bioreactor for engineering vascularized bone.   5090/7/4/045011.
               Tissue Eng Part B, 24(4): 317-325. https://doi.org/10.1089/  26.  Hospodiuk M, Dey M, Sosnoski D,  et al.,  2017, The
               ten.teb.2018.0005.                                  bioink: A comprehensive review on bioprintable materials.
           14.  Ho S S, Murphy K C, Binder B Y, et al., 2016, Increased   Biotechnol  Adv, 35(2): 217-239. https://doi.org/10.1016/j.
               survival and function of mesenchymal  stem cell spheroids   biotechadv.2016.12.006.
               entrapped in instructive alginate hydrogels. Stem Cells Transl   27.  Pourchet L J, Thepot A, Albouy M, et al., 2017, Human skin
               Med, 5(6): 773-781. https://doi.org/10.5966/sctm.2015-0211.  3D bioprinting  using scaffold-free approach.  Adv  Healthc
           15.  Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted   Mater, 6(4):345. https://doi.org/10.1002/adhm.201601101.
               amniotic fluid-derived stem cells accelerate healing of large   28.  Kolesky D B, Homan K A, Skylar-Scott M A, et al., 2016,
               skin wounds. Stem Cells Transl Med, 1(11): 792-802. https://  Three-dimensional bioprinting of thick vascularized tissues.
               doi.org/10.5966/sctm.2012-0088.                     Proc Natl Acad Sci U S A, 113(12): 3179-3184. https://doi.
           16.  Laternser S, Keller H, Leupin O, et al., 2018, A novel microplate   org/10.1073/pnas.1521342113.
               3D bioprinting platform for the engineering of muscle and   29.  Lee S J, Lim G J, Lee J W, et al., 2006, In vitro evaluation of
               tendon tissues. Slas Technol, 3: 2472630318776594. https://  a poly(lactide-co-glycolide)–collagen composite scaffold for
               doi.org/10.1177/2472630318776594.                   bone regeneration. Biomaterials, 27(18): 3466-3472. https://
           17.  Rapoport S, 2013, Electrospinning  tubular  scaffolds with   doi.org/10.1016/j.biomaterials.2006.01.059.
               tissue-like  mechanical  properties  and biomimetic  surface   30.  Kang H W, Lee S J, Ko I K, et al., 2016, A 3D bioprinting
               features.  Methods  Mol  Biol, 1001: 153-165. https://doi.  system  to  produce  human-scale  tissue  constructs  with
               org/10.1007/978-1-62703-363-3_13.                   structural integrity. Nat Biotechnol, 34(3): 312-319. https://

           6                           International Journal of Bioprinting (2019)–Volume 5, Issue 1
   74   75   76   77   78   79   80   81   82   83   84