Page 81 - IJB-5-1
P. 81

3D tissue hybrid biofabrication
           55.  Jakab K, Damon B, Neagu  A,  et al.,  2006, Three-  454. https://doi.org/10.1089/biores.2013.0046.
               dimensional  tissue  constructs  built  by  bioprinting.   68.  Gettler B C, Zakhari J S, Gandhi P S, et al., 2017, Formation
               Biorheology, 43(3-4): 509-513.                      of adipose  stromal  vascular  fraction  cell-laden  spheroids
           56.  Lee W, 2012, Cellular hydrogel biopaper for patterned 3D cell   using a three-dimensional bioprinter and superhydrophobic
               culture and modular tissue reconstruction. Adv Healthc Mater,   surfaces.  Tissue  Eng  Part C., 23(9): 516-524. https://doi.
               1(5): 635-639. https://doi.org/10.1002/adhm.201290023.  org/10.1089/ten.tec.2017.0056.
           57.  Hakam M S, Imani R, Abolfathi N, et al., 2016, Evaluation   69.  Izadifar Z, Chang T, Kulyk W, et al., 2016, Analyzing biological
               of fibrin-gelatin hydrogel as biopaper for application in skin   performance of 3D-printed, cell-impregnated hybrid constructs
               bioprinting: An  in-vitro study.  Biomed  Mater  Eng, 27(6):   for cartilage tissue engineering. Tissue Eng Part C. Methods,
               669-682. https://doi.org/10.3233/BME-161617.        22(3): 173-188. https://doi.org/10.1089/ten.tec.2015.0307.
           58.  Olsen T R, Mattix B, Casco M, et al., 2015, Manipulation   70.  Castilho M, Feyen D, Flandes-Iparraguirre M, et al. 2017, Melt
               of cellular spheroid composition and the effects on vascular   electrospinning  writing of poly-hydroxymethylglycolide-
               tissue fusion.  Acta  Biomater, 13: 188-198. https://doi.  co-epsilon-caprolactone-based  scaffolds for cardiac  tissue
               org/10.1016/j.actbio.2014.11.024.                   engineering. Adv Healthc Mater, 2017: 6-18.
           59.  Nguyen D G, Funk J, Robbins J B, et al., 2016, Bioprinted 3D   71.  Danilevicius  P, Rezende  R  A, Pereira  F D,  et  al., 2015,
               primary liver tissues allow assessment of organ-level response   Burr-like, laser-made 3D microscaffolds for tissue spheroid
               to clinical drug induced toxicity in vitro. PLoS One, 11(7):   encagement.  Biointerphases, 10(2): 21011. https://doi.
               e0158674. https://doi.org/10.1371/journal.pone.0158674.  org/10.1116/1.4922646.
           60.  Shimoto T, 2012, Building of HD MACs using cell processing   72.  Ahmad T, Lee J, Shin Y M, et al., 2017, Hybrid-spheroids
               robot for cartilage regeneration. J Robot Mechatr, 24(2): 347-  incorporating  ECM  like  engineered  fragmented  fibers
               353. https://doi.org/10.20965/jrm.2012.p0347.       potentiate stem cell function by improved cell/cell and cell/
           61.  Itoh  M, Nakayama  K, Noguchi  R,  et  al.,  2015,  Scaffold-  ECM  interactions.  Acta  Biomater,  64: 161-175. https://doi.
               free  tubular  tissues  created  by  a  bio-3D printer  undergo   org/10.1016/j.actbio.2017.10.022.
               remodeling  and endothelialization when implanted  in rat   73.  Lareu R R, Arsianti I, Subramhanya H K, et al., 2007, In vitro
               aortae. PLoS One, 10(9): e0136681. https://doi.org/10.1371/  enhancement of collagen matrix formation and crosslinking
               journal.pone.0136681.                               for  applications  in  tissue  engineering:  A preliminary
           62.  Machino R, Taniguchi D, Takeoka Y, et al., 2015, Scaffold-  study.  Tissue  Eng, 13(2):  385-391. https://doi.org/10.1089/
               free trachea tissue engineering using bioprinting. Am J Respir   ten.2006.0224.
               Crit Care Med, 191: A5343.                      74.  Satyam A, Kumar P, Fan X,  et al., 2014 Macromolecular
           63.  Zhang X Y, Yanagi Y, Takeoka Y, et al., 2018, Regeneration of   crowding meets tissue engineering by self-assembly:
               diaphragm with bio-3D cellular patch. Biomaterials, 167: 1-14.   A paradigm shift in regenerative medicine. Adv Mater, 26(19):
               https://doi.org/10.1016/j.biomaterials.2018.03.055.  3024-3034. https://doi.org/10.1002/adma.201304428.
           64.  Mironov  V,  Kasyanov  V,  Drake  C,  et  al.,  2008,  Organ   75.  Chen C,  Loe  F,  Blocki  A,  et  al.,  2011, Applying
               printing: Promises and challenges. Regen Med, 3(1): 93-103.   macromolecular  crowding  to  enhance  extracellular  matrix
               https://doi.org/10.2217/17460751.3.1.93.            deposition and its remodeling in vitro for tissue engineering
           65.  Collin de H A,  Takeishi K, Guzman-Lepe  J,  et al., 2016,   and cell-based therapies. Adv Drug Deliv Rev, 63(4-5): 277-
               Liver-regenerative  transplantation:  Regrow and reset.  Am   290. https://doi.org/10.1016/j.addr.2011.03.003.
               J  Transplant,  16(6):  1688-1696.  https://doi.org/10.1111/  76.  Dewavrin J Y, Hamzavi N, Shim  V P,  et al.,  2014, Tuning
               ajt.13678.                                          the architecture of three-dimensional collagen hydrogels by
           66.  Yipeng  J, Yongde  X, Yuanyi W,  et  al.,  2017, Microtissues   physiological macromolecular crowding. Acta Biomater, 10(10):
               enhance smooth muscle differentiation and cell viability of   4351-4359. https://doi.org/10.1016/j.actbio.2014.06.006.
               hADSCs for three  dimensional  bioprinting.  Front  Physiol,   77.  Rashid R, Lim N S, Chee S M,  et al., 2014, Novel use
               8: 534. https://doi.org/10.3389/fphys.2017.00534.   for polyvinylpyrrolidone as a macromolecular  crowder
           67.  Williams S  K,  Touroo J  S, Church K  H,  et al., 2013,   for enhanced  extracellular  matrix  deposition  and cell
               Encapsulation  of adipose stromal vascular  fraction  cells   proliferation. Tissue Eng Part C. Methods, 20(12): 994-1002.
               in alginate hydrogel  spheroids using a direct-write  three-  https://doi.org/10.1089/ten.tec.2013.0733.
               dimensional printing system. Biores Open Access, 2(6): 448-  78.  Magno  V, Friedrichs  J,  Weber  H M,  et  al., 2017

           8                           International Journal of Bioprinting (2019)–Volume 5, Issue 1
   76   77   78   79   80   81   82   83   84   85   86