Page 119 - IJB-5-2
        P. 119
     Ghalayini S, et al.
           References                                              Encapsulating   Hydrophilic   Active   Pharmaceutical
                                                                   Ingredients  (API).  J  Nanomed Nanotechnol,  4:6.
           1.   Bobo D, Robinson KJ, Islam J, et al., 2016, Nanoparticle-Based   DOI 10.4172/2157-7439.1000186.
               Medicines: A Review of Materials and Clinical Trials to Date.   14.  Haas  PA,  1992,  Formation  of  Uniform  Liquid  Drops  by
               Pharm Res, 33:2373-87. DOI 10.1007/s11095-016-1958-5.  Application of Vibration to Laminar Jets. Ind Eng Chem Res,
           2.   Smith AW, Nie S, 2010, Semiconductor Nanocrystals. Acc   31:959-67. DOI 10.1021/ie00003a043.
               Chem Res, 43:190-200. DOI 10.1021/ar9001069.    15.  Yadav TP, Yadav RM, Singh D, 2012, Mechanical Milling:
           3.   Jain PK, Huang X, El-Sayed IH, et al., 2007, Review of Some   A Top down Approach for the Synthesis of Nanomaterials
               Interesting Surface Plasmon Resonance-enhanced Properties   and  Nanocomposites.  Nanosci  Nanotechnol,  2:22-48.
               of Noble Metal  Nanoparticles  and  Their  Applications  to   DOI 10.5923/j.nn.20120203.01.
               Biosystems.  Plasmonics,  2:107-18.  DOI  10.1007/s11468-  16.  Aiertza MK, Odriozola I, Cabañero G, et al., 2011, Single-
               007-9031-1.                                         chain Polymer Nanoparticles. Cell Mol Life Sci, 69:337-46.
           4.   Mikhaylova  M,  Kim  DK,  Bobrysheva  N,  et  al.,  2004,   DOI 10.1007/s00018-011-0852.
               Superparamagnetism  of  Magnetite  Nanoparticles:  17.  Yoon  J,  Kwag  J,  Shin  TJ,  et al.,  2014, Nanoparticles  of
               Dependence on Surface Modification. Langmuir, 20:2472-7.   Conjugated Polymers Prepared from Phase-Separated Films
               DOI 10.1021/la035648e.                              of Phospholipids and Polymers for Biomedical Applications.
           5.   Semmler-Behnke  M,  Kreyling  WG,  Lipka  J,  et al.,  2008,   Adv Mater, 26:4559-64. DOI 10.1002/adma.201400906.
               Biodistribution  of  1.4  and  18-nm  Gold  Particles  in  Rats.   18.  Yang  Y,  Khoe  U,  Wang  X,  et  al.,  2009,  Designer  Self-
               Small, 4:2108-11. DOI 10.1002/smll.200800922.       assembling Peptide Nanomaterials. Nano Today, 4:193-210.
           6.   De Jong WH, Hagens WI, Krystek P, et al., 2008, Particle   DOI 10.1016/j.nanotod.2009.02.009.
               Size-dependent  Organ  Distribution  of  Gold  Nanoparticles   19.  Karnik R, Gu F, Basto P, et al., 2008, Microfluidic Platform
               after  Intravenous Administration.  Biomaterials,  29:1912-9.   for Controlled Synthesis of Polymeric Nanoparticles. Nano
               DOI 10.1016/j.biomaterials.2007.12.037.             Lett, 8:2906-12. DOI 10.1021/nl801736q.
           7.   Goel R, Shah N, Visaria R, et al., 2009, Biodistribution of   20.  Ni  M,  Zhuo  S,  Iliescu  C,  et al.,  2019,  Self-assembling
               TNF-alpha-coated Gold Nanoparticles in an in vivo Model   Amyloid-like  Peptides  as  Exogenous  Second  Harmonic
               System. Nanomedicine, 4:401-10. DOI 10.2217/nnm.09.21.  Probes  for  Bioimaging  Applications.  J  Biophotonics,
           8.   Zhang G, Yang Z, Lu W, et al., 2009, Influence of Anchoring   4:e201900065. DOI 10.1002/jbio.201900065.
               Ligands  and Particle  Size  on the Colloidal  Stability  and   21.  Ni M, Tresset G, Iliescu C, et al., 2019, Microfluidics-assisted
               in vivo Biodistribution of Polyethylene Glycol-coated Gold   Self-assembly of Ultrashort Peptides and their Application as
               Nanoparticles  in  Tumor-xenografted  Mice.  Biomaterials,   Theranostic Nanoparticles.
               30:1928-36. DOI 10.1016/j.biomaterials.2008.12.038.  22.  Arab W, Rauf S, Al-Harbi O, et al., 2018, Novel Ultrashort
           9.   Sun L, Fan Z, Wang Y, et al., 2015, Tunable Synthesis of Self-  Self-assembling Peptide Bioinks for 3D Culture of Muscle
               assembled Cyclic Peptide Nanotubes and Nanoparticles. Soft   Myoblast Cells. Int J Bioprinting, 4(2):129. DOI 10.18063/
               Matter, 11:3822. DOI 10.1039/c5sm00533g.            ijb.v4i2.129.
           10.  Habibi N, Kamaly N, Memic A, et al., 2016, Self-assembled   23.  Arab WT, Niyas AM, Seferji K, et al., 2018, Evaluation of
               Peptide-based  Nanostructures:  Smart  Nanomaterials  Peptide Nanogels for Accelerated Wound Healing in Normal
               Toward  Targeted  Drug  Delivery.  Nano Today,  11:41-60.   Micropigs. Front Nanosci Nanotech, 4(4):1-9. DOI 10.15761/
               DOI 10.1016/j.nanotod.2016.02.004.                  fnn.1000173.
           11.  DeFrates  K,  Markiewicz  T,  Gallo  P,  et  al.,  2018,  Protein   24.  Arab  WT,  Kahin  K,  Khan  Z,  et al.,  2019,  Exploring
               Polymer-Based  Nanoparticles:  Fabrication  and  Medical   Nanofibrous Self-assembling Peptide Hydrogels using Mouse
               Applications.  Int J Mol Sci,  19:1717-36.  DOI  10.3390/  Myoblast Cells for 3D Bioprinting and Tissue Engineering
               ijms19061717.                                       Applications. Int J Bioprinting, 5(2):198. DOI 10.18063/ijb.
           12.  Lammel AS, Xiao H, Park SH, et al., 2010, Controlling Silk   v5i2.198.
               Fibroin  Particle  Features  for  Drug  Delivery.  Biomaterials,   25.  Reithofer MR, Lakshmanan A, Ping ATK, et al., 2014, In situ
               31:4583-91. DOI 10.1016/j.biomaterials.2010.02.024.  Synthesis of Size-controlled,  Stable Silver  Nanoparticles
           13.  Oliveira  A,  Guimarães  K,  Cerize  N,  et al.,  2013,   within Ultrashort Peptide Hydrogels and their Anti-bacterial
               Nano  Spray  Drying  as  an  Innovative  Technology  for   Properties.  Biomaterials,  35:7535-42.  DOI  10.1016/j.
                                       International Journal of Bioprinting (2019)–Volume 5, Issue 2       115
     	
