Page 14 - IJB-5-2
        P. 14
     Application of additive manufacturing technology in orthopedic medical implant-Spinal surgery as an example
             In contrast, for the design of surgical tools, templates,   9.   Yang JC, Ma XY, Lin J, et al., 2011, Personalised Modified
           and personalized patient implants, additive manufacturing   Osteotomy using Computer-aided Design-rapid Prototyping
           technology has found a new niche which is demonstrating   to Correct Thoracic Deform-ities. Int Orthop, 35(12):1827-32.
           a rapid advance and may be the most promising application   DOI 10.1007/s00264-010-1155-9.
           in  the  medical  field.  We  believe  that  the  future  of   10.  Martelli N, Serrano C, van den Brink H,  et al., 2016,
           customized patient-specific implants will be the greatest
           benefit of additive manufacturing technology, potentially   Advantages and Disadvantages of 3-dimensional Printing in
           revolutionizing  health  care,  and  benefitting  the  largest   Surgery:  A  Systematic  Review.  Surgery, 159(6):1485-500.
           number of patients. This is especially true as the trend   DOI 10.1016/j.surg.2015.12.017.
           continues toward less invasive and more precise surgical   11.  Lu S, Xu YQ, Lu WW, et al., 2009, A Novel Patient-specific
           treatment strategies, and as clinicians increasingly relies   Navigational Template for Cervical Pedicle Screw Placement.
           on advanced technologies for planning and delivering
           customized and patient-specific medical care.           Spine  (Phila  Pa 1976),  34(26):E959-66.  DOI  10.1097/
             Further discussion on the techniques, technology, and   BRS.0b013e3181c09985.
           limitations of additive manufacturing in health care can   12.  Lu S, Xu YQ, Zhang YZ, et al., 2009, A Novel Computer-assisted
           be found in other articles in this issue.               Drill Guide Template for Placement of C2 Laminar Screws. Eur
                                                                   Spine J, 18(9):1379-85. DOI 10.1007/s00586-009-1051-4.
           References
                                                               13.  Fu M, Lin L, Kong X, et al., 2013, Construction and Accuracy
           1.   Green N, Glatt  V,  Tetsworth K,  et al., 2016,  A Practical   Assessment of Patient-specific Biocompatible Drill Template
               Guide to Image  Processing in the  Creation  of 3D Models   for Cervical Anterior Transpedicular Screw (ATPS) Insertion:
               for Orthopaedics. Tech Orthop, 31(3):153-63. DOI 10.1097/  An  in  vitro Study.  PLoS  One,  8(1):e53580.  DOI  0.1371/
               BTO.0000000000000181.                               journal.pone.0053580.
           2.   D’Urso P, Askin G, Earwaker J, 1999, Spinal Biomodeling.   14.  Hu Y, Yuan Z, Spiker WR, et al., 2013, Deviation Analysis of
               Spine (Phila Pa 1976), 24:1247-51. DOI  10.1097/00007632-  C2 Translaminar Screw Placement Assisted by a Novel Rapid
               199906150-00013.                                    Prototyping Drill Template: A Cadaveric Study. Eur Spine J,
           3.   D’Urso PS,  Williamson  OD,  Thompson RG, 2005,    22(12):2770-6. DOI 10.1007/s00586-013-2993-0.
               Biomodeling  as an  Aid to  Spinal  Instrumentation.  Spine   15.  Takemoto M, Fujibayashi S, Ota E, et al., 2016, Additive-
               (Phila Pa 1976),  30(12):2841-5.  DOI  10.1097/01.  Manufactured  Patient-specific  Titanium  Templates  for
               brs.0000190886.56895.3d.                            Thoracic  Pedicle  Screw Place-ment:  Novel  Design
           4.   D’Urso PS, 2006, Biomodelling.  In: Gibson I, editor.   with Reduced  Contact  Area.  Eur Spine  J, 25:1698-705.
               Advanced  Manufacturing   Technology  for  Medical  DOI 10.1007/s00586-015-3908-z.
               Applications: Reverse Engineering, Software Conversion and   16.  de Beer N, Scheffer C, 2012, Reducing Subsidence Risk by
               Rapid Prototyping. Chichester, United Kingdom: John Wiley   using  Rapid  Manufactured  Patient-specific  Intervertebral
               and Sons Ltd., p31-57. DOI 10.1002/0470033983.ch3.  Disc Implants.  Spine J,  12(11):1060-6.  DOI  10.1016/j.
           5.   Izatt MT, Thorpe PLP, Thompson RG, et al., 2007, The use of   spinee.2012.10.003.
               Physical Biomodelling in Complex Spinal Surgery. Eur Spine   17.  Berretta S, Evans KE, Ghita OR, 2018, Additive Manufacture
               J, 16(9):1507-18. DOI 10.1007/s00586-006-0289-3.    of PEEK Cranial Implants:  Manufacturing  Considerations
           6.   Yamazaki M, Akazawa T, Okawa A, et al., 2007, Usefulness   Versus Accuracy and Mechanical Performance. Mater Des,
               of  Three-dimensional  Full-scale  Modeling of Surgery for   139(1):141-52. DOI 10.1016/j.matdes.2017.10.078.
               a Giant  Cell  Tumor of the  Cervical  Spine.  Spinal  Cord,   18.  Cook HP, 1969, Titanium in Mandibular Replacement. Br J
               45:250-53. DOI 10.1038/sj.sc.3101959.               Oral Surg, 7:108-11. DOI 10.1016/S0007-117X(69)80005-3.
           7.   Mizutani J, Matsubara T, Fukuoka M, et al., 2008, Application   19.  Sing S, Yenog WY, Wiria FE, 2018, Selective Laser Melting
               of Full-scale  Three-dimensional  Models in Patients with   of  Titanium Alloy with 50 wt%  Tantalum: Effect of Laser
               Rheumatoid Cervical Spine. Eur Spine J, 17(5):644-9. DOI   Process Parameters on Part Quality. Int J Refract Met Hard
               10.1007/s00586-008-0611-3.                          Mater, 77:120-7. DOI 10.1016/j.ijrmhm.2018.08.006.
           8.   Mao K, Wang Y, Xiao S, et al., 2010, Clinical Application of   20.  Yang J, Cai H, Lv J,  et al., 2014,  in vivo Study of a
               Computer-designed Polystyrene Models in Complex Severe   Self-Stabilizing  Artificial  Vertebral  Body  Fabricated
               Spinal Deformities: A Pilot Study. Eur Spine J, 19(5):797-802.   by Electron  Beam  Melting.  Spine  (Phila  Pa  1976),
               DOI 10.1007/s00586-010-1359-0.                      39(8):E486-92. DOI 10.1097/BRS.0000000000000211.
           10                          International Journal of Bioprinting (2019)–Volume 5, Issue 2





