Page 14 - IJB-5-2
P. 14
Application of additive manufacturing technology in orthopedic medical implant-Spinal surgery as an example
In contrast, for the design of surgical tools, templates, 9. Yang JC, Ma XY, Lin J, et al., 2011, Personalised Modified
and personalized patient implants, additive manufacturing Osteotomy using Computer-aided Design-rapid Prototyping
technology has found a new niche which is demonstrating to Correct Thoracic Deform-ities. Int Orthop, 35(12):1827-32.
a rapid advance and may be the most promising application DOI 10.1007/s00264-010-1155-9.
in the medical field. We believe that the future of 10. Martelli N, Serrano C, van den Brink H, et al., 2016,
customized patient-specific implants will be the greatest
benefit of additive manufacturing technology, potentially Advantages and Disadvantages of 3-dimensional Printing in
revolutionizing health care, and benefitting the largest Surgery: A Systematic Review. Surgery, 159(6):1485-500.
number of patients. This is especially true as the trend DOI 10.1016/j.surg.2015.12.017.
continues toward less invasive and more precise surgical 11. Lu S, Xu YQ, Lu WW, et al., 2009, A Novel Patient-specific
treatment strategies, and as clinicians increasingly relies Navigational Template for Cervical Pedicle Screw Placement.
on advanced technologies for planning and delivering
customized and patient-specific medical care. Spine (Phila Pa 1976), 34(26):E959-66. DOI 10.1097/
Further discussion on the techniques, technology, and BRS.0b013e3181c09985.
limitations of additive manufacturing in health care can 12. Lu S, Xu YQ, Zhang YZ, et al., 2009, A Novel Computer-assisted
be found in other articles in this issue. Drill Guide Template for Placement of C2 Laminar Screws. Eur
Spine J, 18(9):1379-85. DOI 10.1007/s00586-009-1051-4.
References
13. Fu M, Lin L, Kong X, et al., 2013, Construction and Accuracy
1. Green N, Glatt V, Tetsworth K, et al., 2016, A Practical Assessment of Patient-specific Biocompatible Drill Template
Guide to Image Processing in the Creation of 3D Models for Cervical Anterior Transpedicular Screw (ATPS) Insertion:
for Orthopaedics. Tech Orthop, 31(3):153-63. DOI 10.1097/ An in vitro Study. PLoS One, 8(1):e53580. DOI 0.1371/
BTO.0000000000000181. journal.pone.0053580.
2. D’Urso P, Askin G, Earwaker J, 1999, Spinal Biomodeling. 14. Hu Y, Yuan Z, Spiker WR, et al., 2013, Deviation Analysis of
Spine (Phila Pa 1976), 24:1247-51. DOI 10.1097/00007632- C2 Translaminar Screw Placement Assisted by a Novel Rapid
199906150-00013. Prototyping Drill Template: A Cadaveric Study. Eur Spine J,
3. D’Urso PS, Williamson OD, Thompson RG, 2005, 22(12):2770-6. DOI 10.1007/s00586-013-2993-0.
Biomodeling as an Aid to Spinal Instrumentation. Spine 15. Takemoto M, Fujibayashi S, Ota E, et al., 2016, Additive-
(Phila Pa 1976), 30(12):2841-5. DOI 10.1097/01. Manufactured Patient-specific Titanium Templates for
brs.0000190886.56895.3d. Thoracic Pedicle Screw Place-ment: Novel Design
4. D’Urso PS, 2006, Biomodelling. In: Gibson I, editor. with Reduced Contact Area. Eur Spine J, 25:1698-705.
Advanced Manufacturing Technology for Medical DOI 10.1007/s00586-015-3908-z.
Applications: Reverse Engineering, Software Conversion and 16. de Beer N, Scheffer C, 2012, Reducing Subsidence Risk by
Rapid Prototyping. Chichester, United Kingdom: John Wiley using Rapid Manufactured Patient-specific Intervertebral
and Sons Ltd., p31-57. DOI 10.1002/0470033983.ch3. Disc Implants. Spine J, 12(11):1060-6. DOI 10.1016/j.
5. Izatt MT, Thorpe PLP, Thompson RG, et al., 2007, The use of spinee.2012.10.003.
Physical Biomodelling in Complex Spinal Surgery. Eur Spine 17. Berretta S, Evans KE, Ghita OR, 2018, Additive Manufacture
J, 16(9):1507-18. DOI 10.1007/s00586-006-0289-3. of PEEK Cranial Implants: Manufacturing Considerations
6. Yamazaki M, Akazawa T, Okawa A, et al., 2007, Usefulness Versus Accuracy and Mechanical Performance. Mater Des,
of Three-dimensional Full-scale Modeling of Surgery for 139(1):141-52. DOI 10.1016/j.matdes.2017.10.078.
a Giant Cell Tumor of the Cervical Spine. Spinal Cord, 18. Cook HP, 1969, Titanium in Mandibular Replacement. Br J
45:250-53. DOI 10.1038/sj.sc.3101959. Oral Surg, 7:108-11. DOI 10.1016/S0007-117X(69)80005-3.
7. Mizutani J, Matsubara T, Fukuoka M, et al., 2008, Application 19. Sing S, Yenog WY, Wiria FE, 2018, Selective Laser Melting
of Full-scale Three-dimensional Models in Patients with of Titanium Alloy with 50 wt% Tantalum: Effect of Laser
Rheumatoid Cervical Spine. Eur Spine J, 17(5):644-9. DOI Process Parameters on Part Quality. Int J Refract Met Hard
10.1007/s00586-008-0611-3. Mater, 77:120-7. DOI 10.1016/j.ijrmhm.2018.08.006.
8. Mao K, Wang Y, Xiao S, et al., 2010, Clinical Application of 20. Yang J, Cai H, Lv J, et al., 2014, in vivo Study of a
Computer-designed Polystyrene Models in Complex Severe Self-Stabilizing Artificial Vertebral Body Fabricated
Spinal Deformities: A Pilot Study. Eur Spine J, 19(5):797-802. by Electron Beam Melting. Spine (Phila Pa 1976),
DOI 10.1007/s00586-010-1359-0. 39(8):E486-92. DOI 10.1097/BRS.0000000000000211.
10 International Journal of Bioprinting (2019)–Volume 5, Issue 2

